Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching the heart and lungs in action

10.11.2008
A RIKEN-led team has designed and constructed a high-resolution, computed tomography (CT) system that can visualize the motion and deformation of the heart, coronary arteries and small airways of live rats and mice, the animals most often used as models for human disease.

A newly developed micro-CT system produces images sharp enough to detect the motion of arteries and small airways in rats and mice

A RIKEN-led team has designed and constructed a high-resolution, computed tomography (CT) system that can visualize the motion and deformation of the heart, coronary arteries and small airways of live rats and mice, the animals most often used as models for human disease.

These internal movements are integral to understanding respiratory and cardiovascular diseases, and therefore to the development of effective treatments. They are also influenced by drugs, and hence can be used in testing and development of new therapeutic compounds.

The condition of the heart is manifested in its rhythmical beating, and the location of fatty deposits, which can lead to heart disease, is influenced by motion of the arteries. Deformation of the airways affects gas exchange and deposition of particles, and initial results from the new system already show that changes in diameter are larger in smaller airways.

In the past five years, several systems have been proposed and developed for imaging the heart and lungs of small living animals, but none have been sharp enough to detect the motion of arteries and small airways. The highest potential resolution can be obtained using x-ray based, micro-CT, but the sample animal needs to be as still as possible. When imaging the heart, the movement of the lung needs to be minimized, and vice versa. So, data to construct the images needs to be collected under certain prescribed conditions.

In a recent paper in Physics in Medicine and Biology1, researchers from the RIKEN Advanced Science Institute in Wako and other Japanese institutions explain how they dealt with these problems.

They used synchrotron radiation at the SPring-8 Center in Harima, which is much more powerful and predictable than standard laboratory sources, and so achieves high contrast resolution and minimizes blur. The shutters for x-ray source and detection were synchronized. The sample rodents were anaesthetized, put onto a ventilator, and connected to an electrocardiogram (ECG) machine. The researchers were then able to acquire data at controlled airway pressures and time observations for the periods between heart contractions. For heart and arteries, image acquisition could be timed for the end of breath expiration.

The sharp images during dramatic motion thus obtained allow calculation of gas exchange in small airways, and of shear stress in blood vessels, an important factor in deposition of plaques. “This development is a significant step in our program to create a computer model of the human body,” says Ryutaro Himeno, who heads the research team.

References

1. Sera, T., Yokota, H., Fujisaki, K., Fukasaku, K., Tachibana, H., Uesugi, K., Yagi, N. & Himeno, R. Development of high-resolution 4D in vivo-CT for visualization of cardiac and respiratory deformations of small animals. Physics in Medicine and Biology 53, 4285–4301 (2008).

The corresponding author for this highlight is based at the RIKEN Computational Biomechanics Unit

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/575/
http://www.researchsea.com

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>