Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain surgery through the cheek

16.10.2014

A new way to treat severe epilepsy

For those most severely affected, treating epilepsy means drilling through the skull deep into the brain to destroy the small area where the seizures originate – invasive, dangerous and with a long recovery period.


This is a mockup of a patient in an MRI machine shows how the surgical robot that can perform epilepsy surgery through the cheek is set up.

Credit: David Comber, Vanderbilt University

Five years ago, a team of Vanderbilt engineers wondered: Is it possible to address epileptic seizures in a less invasive way? They decided it would be possible. Because the area of the brain involved is the hippocampus, which is located at the bottom of the brain, they could develop a robotic device that pokes through the cheek and enters the brain from underneath which avoids having to drill through the skull and is much closer to the target area.

To do so, however, meant developing a shape-memory alloy needle that can be precisely steered along a curving path and a robotic platform that can operate inside the powerful magnetic field created by an MRI scanner.

The engineers have developed a working prototype, which was unveiled in a live demonstration this week at the Fluid Power Innovation and Research Conference in Nashville by David Comber, the graduate student in mechanical engineering who did much of the design work.

The business end of the device is a 1.14 mm nickel-titanium needle that operates like a mechanical pencil, with concentric tubes, some of which are curved, that allow the tip to follow a curved path into the brain. (Unlike many common metals, nickel-titanium is compatible with MRIs.) Using compressed air, a robotic platform controllably steers and advances the needle segments a millimeter at a time.

According to Comber, they have measured the accuracy of the system in the lab and found that it is better than 1.18 mm, which is considered sufficient for such an operation. In addition, the needle is inserted in tiny, millimeter steps so the surgeon can track its position by taking successive MRI scans.

According to Associate Professor of Mechanical Engineering Eric Barth, who headed the project, the next stage in the surgical robot's development is testing it with cadavers. He estimates it could be in operating rooms within the next decade.

To come up with the design, the team began with capabilities that they already had.

"I've done a lot of work in my career on the control of pneumatic systems," Barth said. "We knew we had this ability to have a robot in the MRI scanner, doing something in a way that other robots could not. Then we thought, 'What can we do that would have the highest impact?'"

At the same time, Associate Professor of Mechanical Engineering Robert Webster had developed a system of steerable surgical needles. "The idea for this came about when Eric and I were talking in the hallway one day and we figured that his expertise in pneumatics was perfect for the MRI environment and could be combined with the steerable needles I'd been working on," said Webster.

The engineers identified epilepsy surgery as an ideal, high-impact application through discussions with Associate Professor of Neurological Surgery Joseph Neimat. They learned that currently neuroscientists use the through-the-cheek approach to implant electrodes in the brain to track brain activity and identify the location where the epileptic fits originate. But the straight needles they use can't reach the source region, so they must drill through the skull and insert the needle used to destroy the misbehaving neurons through the top of the head.

Comber and Barth shadowed Neimat through brain surgeries to understand how their device would work in practice.

"The systems we have now that let us introduce probes into the brain – they deal with straight lines and are only manually guided," Neimat said. "To have a system with a curved needle and unlimited access would make surgeries minimally invasive. We could do a dramatic surgery with nothing more than a needle stick to the cheek."

The engineers have designed the system so that much of it can be made using 3-D printing in order to keep the price low. This was achieved by collaborating with Jonathon Slightam and Vito Gervasi at the Milwaukee School of Engineering who specialize in novel applications for additive manufacturing.

###

Current funding comes through grant 0540834 from the Center for Compact and Efficient Fluid Power, a National Science Foundation Engineering Research Center that supports advances in fluid power, and past funding from Martin Ventures.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>