Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017

The cutting-edge biocompatible near-infrared 3D tracking system used to guide the suturing in the first smart tissue autonomous robot (STAR) surgery has the potential to improve manual and robot-assisted surgery and interventions through unobstructed 3D visibility and enhanced accuracy, according to a study published in the March 2017 issue of IEEE Transactions on Biomedical Engineering.

The study successfully demonstrates feasibility in live subjects (in-vivo) and demonstrates 3D tracking of tissue and surgical tools with millimeter accuracy in ex-vivo tests. More accurate and consistent suturing helps reduce leakage, which can improve surgical outcomes.


Smart Tissue Autonomous Robot (STAR), developed by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System, performed the first supervised autonomous robotic soft tissue surgery on a live subject in May 2016.

Credit: The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System

Authored by the development team from Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System and funded by the National Institutes of Health, the study explains the design of the 3D tracking system with near-infrared fluorescent (NIRF) markers and, using robotic experiments, compares its tracking accuracies against standard optical tracking methods. At speeds of 1 mm/second, the team observed tracking accuracies of 1.61 mm that degraded only to 1.71 mm when the markers were covered in blood and tissue.

"A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, which makes it difficult to differentiate from surrounding tissue," says Axel Krieger, Ph.D., senior author on the study and program lead for Smart Tools at the Sheikh Zayed Institute. "By enabling accurate tracking of tools and tissue in the surgical environment, this innovative work has the potential to improve many applications for manual and robot-assisted surgery."

The system is made up of small biocompatible NIRF markers with a novel fused plenoptic and near-infrared (NIR) camera tracking system, enabling 3D tracking that can overcome blood and tissue occlusion in an uncontrolled, rapidly changing surgical environment. Krieger explains that the NIR imaging has the potential to overcome occlusion problems because NIR light penetrates deeper than visual light.

"This work describes the 'super human eyes' and a bit of 'intelligence' of our STAR robotic system, making tasks such as soft tissue surgery on live subjects possible," explains Peter C. Kim, M.D., vice president and associate surgeon in chief of the Sheikh Zayed Institute.

Future work will include further integration and evaluation of the tracking system in image-guided medical interventions such as robotic surgeries.

###

The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System is a hub for innovation focused on making pediatric surgery more precise, less invasive and pain free. It was founded in 2010 through a $150 million gift from the Government of Abu Dhabi. By combining research and clinical work in the areas of imaging, bioengineering, pain medicine, immunology and personalized medicine, the institute's physicians and scientists are developing leading-edge knowledge, tools and procedures that will benefit children globally.

Hani Ukayli | EurekAlert!

Further reports about: 3-D tracking Innovation robot-assisted surgery tracking system

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>