Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-imaging: Probing for deeper diagnostics

01.08.2013
Multi-armed polymers with dual fluorescent and magnetic imaging capabilities boost the resolution of cancer detection tools

Molecular probes that selectively latch onto tumor cells and emit imaging signals can detect cancer without invasive procedures. These tools, however, have specific deficiencies. Fluorescent probes that image individual molecules have poor depth penetration into cells.

The alternative, magnetic resonance imaging (MRI) probes, resolves cells in three dimensions but with low resolution. Bin Liu at the A*STAR Institute of Materials Research and Engineering, Singapore, and co-workers have now solved this problem with a biocompatible polymer that combines MRI and fluorescence imaging in a single molecular probe1.

According to Liu, designing a probe with joint imaging capabilities is challenging because fluorescent and MRI-active materials display different biological behaviors. Substances that emit fluorescent light are often lethal to cells at low concentrations. In contrast, to produce sufficient imaging signals, MRI probes require substantial injections of substances called chelated gadolinium (Gd(III)) agents.

Liu and her team devised a strategy to overcome the dissimilar dosage requirements with polymers known as ‘hyperbranched’ polyglycerols (HPGs). These materials have a tree-like structure of repeating molecular units that radiate from a core. HPGs also have a promising biomedical track record because of their water solubility and low cytotoxicity. Liu and co-workers envisaged using HPGs to encapsulate fluorescent organic molecules as their core. Then, they reasoned, high densities of Gd(III) agents could attach to the numerous hydroxyl attachment points present on the HPG surfaces.

After synthesizing a fluorescent molecule consisting of fused aromatic rings, the researchers attached eight of them to a rigid polysilicate cage, known as polyhedral oligomeric silsesquioxane. With the stable core in place, they initiated growth and outward branching of the HPG into a spherical protective shell — a tricky procedure, notes Liu, as it required carefully controlling the reagents and polymerization conditions. The new nanospherical probe converted over 50% of light photons into fluorescent emissions, a remarkably high quantum yield arising from the water-repellent nature of the dense HPG shell.

Next, the team attached Gd(III) agents to the probe’s exterior and tested its dual detection capabilities inside MCF-7 breast cancer cells. Both MRI and fluorescence imaging revealed that the nanoprobe was well integrated into cell structures with no obvious changes to cell viability. The probe demonstrated high photostability when exposed to laser light — a key attribute for fluorescence imaging — and had promising magnetic properties that compared favorably with commercial MRI probes. “Combining both imaging techniques in one probe simultaneously boosts resolution and penetration depth,” says Liu. “The different signals can also validate each other to improve detection accuracy.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Liu, J., Li, K., Geng, J., Zhou, L., Chandrasekharan, P., Yang, C.-T. & Liu, B. Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polymer Chemistry 4, 1517–1524 (2013). | article

Associated links
http://www.research.a-star.edu.sg/research/6707

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6707
http://www.researchsea.com

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>