Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better detecting cancer with ultrashort flashes of light: New junior research group at Leibniz IPHT

08.03.2019

Research to improve cancer diagnostics: Young scientist Maria Chernysheva is setting up a junior research group at Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena to develop novel ultrafast lasers. With new approaches to ultrafast fiber lasers, Maria Chernysheva intends to expand the wavelength range researched in Jena and establish a new technological platform for infrared spectroscopy for diagnosing cancer. Ultrafast laser technology is particularly suitable for this purpose because it provides fingerprint-like information on the molecular composition of tissue and thus enables fast, precise and gentle diagnosis.

From Moscow via Birmingham to Jena: For Dr. Maria Chernysheva, Leibniz IPHT as the new stage of her scientific career means more than a geographical change. For the young engineer, her new position as a head of the junior research group for ultrafast lasers also marks a turning point in her professional pathway.


Dr. Maria Chernysheva leads the junior research group "ultrafast fiber lasers"

Sven Döring

"Throughout my research career, I was developing lasers. After successful publication of its performance or phenomena discovered, the laser was put on the top shelf, where it got dusted or disassembled in favor of new laser setups."

Such routine made her skeptical about her research, and so she decided to change her approach. „I started looking for application ideas or collaborations with other areas of research, such as sensing and medicine.“

Following this concept, Maria Chernysheva established a collaboration with the Medical School at Aston University, where she worked before moving to Jena in January 2019, to develop effective laser instruments for cardio surgery.

Her objective: New lasers for cancer research

For the scientist, the new station at one of the leading research institutes in the field of optical health technologies is a consistent choice: "The focus of Leibniz IPHT on the research of photonic systems as tools for medicine, life and environmental sciences ideally matches my own primary research interest.“

Plus, the institute was already familiar to Maria Chernysheva as she was one of the participants of the international career workshop "Women in Photonics" at Leibniz IPHT in April 2018. “I really like the idea of having a full circle of technology: from fiber preform fabrication through laser and other photonic system development to real-world applications of these systems.

„This last bit — the application of developed lasers — was missing in both of my previous institutions“, Dr. Chernysheva adds. „This makes IPHT very advantageous. I would say that such a combination is extremely unique and stands out IPHT among other institutions.“

With her junior research group, Maria Chernysheva aspires to bring forward a new step in ultrafast fiber lasers to open up the field of the mid-infrared generation. The telecommunications engineer, who received her doctorate in Laser Physics in 2014 at the Fiber Optics Research Center of the Russian Academy of Sciences in Moscow, is thus expanding the wavelength range researched in Jena. She aims at establishing a new field of laser systems used in infrared spectroscopy for cancer diagnostics.

“This will mainly target 2 micrometer and Mid-IR ultrafast fibre laser development for the application in spectroscopy — for example for cancer diagnostics — or surgery.“ Most recently, Maria Chernysheva worked on the development of femtosecond mid-infrared fiber lasers at Aston University where she was funded with the Engineering for Development fellowship from the Royal Academy of Engineering and designed instruments for a non-invasively assessment of the biochemical content of tissues.

Ultrafast lasers are lasers emitting ultra-short light pulses. "Ultra-short" means that the light pulses can be shorter than one trillionths second. “Due to high duty factor, such lasers became a working horse for all applications requiring both high power sources and preciseness, such as micro- and even nanomachining or surgery," explains Maria Chernysheva.

Emerging and rapidly developing applications are not limited by optical frequency conversion, and include optical storage and three-photon microscopy, which is particularly of interest for neuroscientists for imaging the work of living cells.

By setting up junior research groups, Leibniz IPHT supports excellent young scientists by giving them the opportunity to establish a promising research topic within the research profile of the institute. For example, former junior research group leader Prof. Ute Neugebauer — today deputy scientific director —now leads the research group „Clinical Spectroscopic Diagnostics“ within the research and treatment centre "Center for Sepsis Control and Care" of Jena University Hospital.

Together with her team, Prof. Neugebauer researches on new tools to enable better treatment of sepsis in the future. Professor Torsten Frosch also established himself at Leibniz IPHT with his former junior research group on fiber spectroscopic sensor technology. He and his team are investigating novel optical sensor fibers for the spectroscopic analysis of gases and antibiotics helping e.g. physicians to determine whether patients with a severe infection are treated with a sufficient dose of antibiotics.

Wissenschaftliche Ansprechpartner:

Dr. Maria Chernysheva, Junior Research Group Leader "Ultrafast Fiber Lasers"
+49 (0) 3641 · 206-312
maria.chernysheva(a)leibniz-ipht.de

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/krebs-erkennen-mit-u...

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Focused ultrasound may open door to Alzheimer's treatment
03.12.2019 | Radiological Society of North America

nachricht Novel MRI-guided ultrasound treatment destroys prostate cancer
02.12.2019 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

03.12.2019 | Life Sciences

SLAC scientists invent a way to see attosecond electron motions with an X-ray laser

03.12.2019 | Materials Sciences

Focused ultrasound may open door to Alzheimer's treatment

03.12.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>