Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrow study identifies new way to biopsy brain tumors in real time

13.11.2009
New microscope is expected to improve the accuracy of intraoperative diagnostics

A new miniature, hand-held microscope may allow more precise removal of brain tumors and an easier recognition of tumor locations during surgery.

Neurosurgeons at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center are using the new miniature laser confocal microscope to view brain tumor regions during surgery and obtain digital images of the tumor and brain tissue. This was not previously possible without taking biopsies of the tissue.

The microscope is used to image the tissue after a fluorescent drug is injected into the patient and travels into the tumor. The first application of the technology in the research lab at Barrow showed that it was possible to distinguish cancer cells and the margin of the brain tumor without taking a biopsy. Barrow researchers also discovered that it was possible to obtain a digital video of the brain tumor to show blood flowing through the abnormal vessels of the tumor and the transition from normal to abnormal brain tissue.

Typically, intraoperative diagnosis is performed by obtaining several specimens from within a brain tumor using biopsy forceps and cutting, freezing and staining the specimen for examination under the microscope. The traditional analysis is limited by sampling error and by mechanical tissue damage from the biopsy forceps, slowing operative workflow by 30 to 40 minutes.

The new microscope can overcome these limitations by helping to visualize the cellular and tissue features of a tumor in real-time. As in the study, the probe can be moved over the entire visible extent of a tumor, guiding the neurosurgeon to hypercellular or aggressive areas that are likely to generate high-yield biopsies.

"As neuropathologists become familiar with the new confocal microscopic appearance of various tumor types and grades, the traditional intraoperative diagnosis may be replaced by the real-time analysis of confocal images by the new microscope," says Mark Preul, MD, Newsome Chair of Neurosurgery Research at Barrow. These images could be analyzed remotely, improving the accuracy of intraoperative diagnosis.

This study was presented at the Annual Meeting of the American Association of Neurological Surgeons in San Diego and was recently published in the Journal of Neurosurgery.

Carmelle Malkovich | EurekAlert!
Further information:
http://www.chw.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>