Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated analysis of MR images may identify early Alzheimer’s disease

26.05.2009
Analyzing MRI studies of the brain with software developed at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH) may allow diagnosis of Alzheimer's disease and of mild cognitive impairment, a lesser form of dementia that precedes the development of Alzheimer's by several years.

In their report that will appear in the journal Brain and has been released online, the MGH/Martinos team show how their software program can accurately differentiate patients with mild cognitive impairment or Alzheimer's disease from normal elderly individuals based on anatomic differences in brain structures known to be affected by the disease.

"Traditionally Alzheimer's has been diagnosed based on a combination of factors – such as a neurologic exam, detailed medical history and written tests of cognitive functioning – with neuroimaging used primarily to rule out other diseases such as stroke or a brain tumor," says Rahul Desikan MD, PhD, of the Martinos Center and Boston University School of Medicine, lead author of the Brain paper. "Our findings show the feasibility and importance of using automated, MRI-based neuroanatomic measures as a diagnostic marker for Alzheimer's disease."

The researchers note that mild cognitive impairment occurs in about 20 percent of elderly individuals – as many as 40 percent of those over 85 – 80 percent of whom develop Alzheimer's within five or six years. Since drugs that may slow the progression of Alzheimer's are in development, the ability to treat patients in the earliest stages of the disease may significantly delay progression to dementia. To investigate whether MR imaging can produce diagnostic markers for mild cognitive impairment and Alzheimer's disease, the research team used FreeSurfer – an openly available imaging software package developed at the Martinos Center and the University of California at San Diego – to examine a number of neuroanatomic regions across a range of normal individuals and patients with mild cognitive impairment and Alzheimer's disease.

In the first phase of the study, the investigators examined MR images of 97 elderly individuals, some who had been determined to have mild cognitive impairment and others who were cognitively normal. Analyzing those images identified three regions of the brain where structural differences distinguished the normal controls from participants with mild cognitive impairment with an accuracy of 91 percent. Earlier pathological and imaging studies have found evidence of early Alzheimer's disease in these three areas – the hippocampus, entorhinal cortex and the supramarginal gyrus.

To validate the accuracy and assess the reliability of the first-phase observations, the investigators analyzed imaging data from 216 individuals in the Alzheimer's Disease Neuroimaging Database – 94 of whom were normal, 58 who had mild cognitive impairment at the time of imaging and went on to develop dementia, and 65 who had probable Alzheimer's based on their clinical symptoms. These participants also had a series of neuropsychological tests, and samples of cerebrospinal fluid were available for many of them.

Automated MRI measures of the same three areas identified in the first phase – entorhinal cortex, hippocampus, and supramarginal gyrus – discriminated individuals with mild cognitive impairment from normal elderly controls with 95 percent accuracy, and patients with Alzheimer's were discriminated from normal controls with 100 percent accuracy. The MRI measures also were significantly correlated with clinical and cognitive tests of dementia, particularly memory decline, and with biomarkers of cellular pathology such as the Alzheimer's-associated forms of the tau and amyloid proteins.

"Our results indicate that these automated MRI measures are one effective way of identifying individuals in the earliest stages of Alzheimer's disease, but before this technology can be used clinically, several follow-up studies need to be done," says Desikan. "Those include determining whether these automated MRI measures can accurately predict which individuals with mild cognitive impairment will progress to Alzheimer's; seeing if they can differentiate Alzheimer's from other neurodegenerative diseases; assessing how these measures do at early diagnosis, compared to other measures such as cellular biomarkers; and then validating all of these findings against the gold standard for diagnosis, postmortem examination of brain tissue."

Bruce Fischl, PhD, of the Martinos Center is the senior author of the Brain study. Additional co-authors are Nicholas Schmansky, Douglas Greve and David Salat of the Martinos Center; Howard Cabral, Boston University School of Public Health; Christopher Hess, William Dillon, Christine Glastonbury and Michael Weiner, University of California, San Francisco; and Randy Buckner, Harvard University and Howard Hughes Medical Institute. Support for the study came from the American Federation for Aging Research, the National Center for Research Resources, the National Institute for Biomedical Imaging and Bioengineering, the Mental Illness and Neuroscience Discovery Institute, the National Institute on Aging, the National Institute for Neurologic Disorders and Stroke and several other organizations.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>