Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence can speed up the detection of stroke

31.03.2020

Timely detection and accurate segmentation of acute ischemic stroke (AIS) lesions on magnetic resonance images (MRIs) are essential for the triaging patient for endovascular therapy.

Lesion segmentation is a routine process where the abnormal areas within brain images are qualitatively and manually picked by expert radiologists.


Examples of the manual and automated lesion segmentations. The first column shows the original DWIs, the second column shows the manual delineation of the acute ischemic lesions, and the third column demonstrate the results given by the proposed method.

Credit: Turku PET Centre

However, manual lesion segmentation is time consuming and suffers from operator-bias. Accordingly, efficient and low-cost approaches for AIS lesion screening are yet to be introduced.

This research introduces a novel and fully automated technique for detection and segmentation of AIS lesions on MRIs and classification of images into stroke and none-stroke. This fully automated anomaly-detection method compares diffusion weighted images (DWIs) and apparent diffusion coefficients (ADC) images of the subjects with a group of healthy images in voxel-level.

Areas with hyperintensity on DWI and hypointensity on ADC are identified as lesions and saved as lesion masks. The lesion segmentation method was investigated on approximately 100 cases.

Since there is a risk of false lesion identification due to the artifacts, noises, and image low resolution, the lesion masks created by the method are screened and filtered via a binary classifier which either confirms that the created lesion mask contains a real AIS lesion or not. The classification performance was evaluated on about 200 MRIs.

The published results in the Journal of Neuroscience Methods show good agreement with the manually drawn lesions by experts (gold standard). The whole approach, including lesion segmentation and image classification, is straightforward, fast and does not require high computation power and memory.

"We believe that this method has the capacity to be implemented on an ordinary desktop workstation integrated into the routine clinical diagnostic pipelines of the hospitals.

This approach can help the radiologists to speed up the workflow of lesion detection and to reduce the operator bias in lesion segmentation owing to the reproducibility of the method", tells project researcher Sanaz Nazari-Farsani from Turku PET Centre.

Media Contact

Sanaz Nazari-Farsani
sanaz.nazarifarsani@utu.fi
358-402-158-787

http://www.utu.fi/en/ 

Sanaz Nazari-Farsani | EurekAlert!
Further information:
https://www.utu.fi/en/news/press-release/artificial-intelligence-can-speed-up-detection-of-stroke
http://dx.doi.org/10.1016/j.jneumeth.2019.108575

Further reports about: MRIs Neuroscience PET STROKE brain images computation power lesion segmentation

More articles from Medical Engineering:

nachricht High-resolution 3D view inside breast tumors with opto-acoustic mesoscopy
27.05.2020 | Technische Universität München

nachricht New double-contrast technique picks up small tumors on MRI
26.05.2020 | University of California - Davis

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

Human skin is an important source of ammonia emissions

27.05.2020 | Life Sciences

Algorithms, gold and holographic references boost biomolecule diffraction

27.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>