Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm significantly improves imaging for full-body MRIs

05.05.2011
A new study reveals an improved algorithm that can dramatically improve how radiologists capture and interpret full-body MRIs, particularly in the abdominal region.

Motion artifacts in MRIs, such as patient movement, often appear as ghosting artifacts which may obscure clinical information says Dr. Candice Bookwalter, presenting author for the study.

"Almost every acquisition during an MR abdominal exam requires a breath hold to limit motion. For example, a routine liver exam includes at least nine breath holds. Even with fast imaging techniques, these breath holds are often long and difficult for patients, and failed breath holds are almost always identified only after image acquisition. This is particularly problematic in timed post-contrast imaging," she says.

She and her team developed the Motion Artifact Removal by Retrospective Resolution Reduction (MARs) algorithm to identify the transition between a breath hold and free breathing to allow for better retrospective reviews of the image and to reduce the need for additional imaging. Dr. Bookwalter says, "MARs detected and removed motion corrupted data automatically in our asymptomatic volunteers and patients, which improved the overall image quality."

In the study performed at the University Hospital at Case Medical Center, Case Western Reserve University, Dr. Bookwalter and her colleagues successfully showed how the MARs technique allows radiologists and technicians to create clinically useful images, even in the presence of motion. She is confident that this algorithm will be useful tool for image interpretation. She says, "The MARs algorithm requires very little alteration of the clinical MR protocol. We envision the final application of this technique to be completely automatic and likely applied by the clinical technologist prior to presentation to the radiologist."

Dr. Bookwalter will deliver a presentation on this study on Thursday, May 5, 2011 at the 2011 ARRS Annual Meeting at the Hyatt Regency Chicago.

Keri Sperry | EurekAlert!
Further information:
http://www.arrs.org

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>