Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Fantastic Voyage" Through the Body -- with Precision Control

16.12.2011
TAU researcher develops capsule endoscope controlled by MRI to investigate digestive system

Endoscopes — small cameras or optic fibres that are usually attached to flexible tubing designed to investigate the interior of the body — can be dangerously invasive. Procedures often require sedative medications and some recovery time. Now a researcher at Tel Aviv University is developing a "capsule endoscope" that can move through the digestive tract to detect problems independent of any attachments.


A prototype of the "capsule" being tested at Brigham & Women's Hospital, Boston.

According to Dr. Gabor Kosa of TAU's School of Mechanical Engineering, the project is inspired by an endoscopic capsule designed for use in the small intestine. But unlike the existing capsule, which travels at random and snaps pictures every half second to give doctors an overall view of the intestines, the new "wireless" capsules will use the magnetic field of a magnetic resonance imaging (MRI) machine and electronic signals manipulated by those operating the capsule to forge a more precise and deliberate path.

It's a less invasive and more accurate way for doctors to get an important look at the digestive tract, where difficult-to-diagnose tumors or wounds may be hidden, or allow for treatments such as biopsies or local drug delivery. The technology, which was recently reported in Biomedical Microdevices, was developed in collaboration with Peter Jakab, an engineer from the Surgical Planning Laboratory at Brigham and Women's Hospital in Boston, affiliated with Harvard Medical School.

Swimming with the current

What sets this endoscope apart is its ability to actively explore the digestive tract under the direction of a doctor. To do this, the device relies on the magnetic field of the MRI machine as a "driving force," says Dr. Kosa. "An MRI has a very large constant magnetic field," he explains. "The capsule needs to navigate according to this field, like a sailboat sailing with the wind."

In order to help the capsules "swim" with the magnetic current, the researchers have given them "tails," a combination of copper coils and flexible polymer. The magnetic field creates a vibration in the tail which allows for movement, and electronics and microsensors embedded in the capsule allow the capsule's operator to manipulate the magnetic field that guides the movement of the device. The use of copper, a non-ferro magnetic material, circumvents other diagnostic challenges posed by MRI, Dr. Kosa adds. While most magnets interfere with MRI by obscuring the picture, copper appears as only a minor blot on otherwise clear film.

The ability to drive the capsule, Dr. Kosa says, will not only lead to better diagnosis capabilities, but patients will experience a less invasive procedure in a fraction of the time.

Microrobotics of the future

In the lab at the Brigham and Women's Hospital, Dr. Kosa and his fellow researchers have tested the driving mechanism of the capsule in an aquarium inside the MRI. The results have shown that the capsule can successfully be manipulated using a magnetic field. Moving forward, the researchers are hoping to further develop the capsule's endoscopic and signalling functions.

According to Dr. Kosa, a new faculty recruit to TAU, this project is part of a bright future for the field of microrobotics. At the university, his new research lab, called RBM2S, focuses on microsystems and robotics for biomedical applications, and an educational robotics lab, ERL, will teach future robotics experts studying at TAU's School of Mechanical Engineering.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Control MRI Mechanical Engineering Tau electronic signal magnetic field

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>