Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Fantastic Voyage" Through the Body -- with Precision Control

16.12.2011
TAU researcher develops capsule endoscope controlled by MRI to investigate digestive system

Endoscopes — small cameras or optic fibres that are usually attached to flexible tubing designed to investigate the interior of the body — can be dangerously invasive. Procedures often require sedative medications and some recovery time. Now a researcher at Tel Aviv University is developing a "capsule endoscope" that can move through the digestive tract to detect problems independent of any attachments.


A prototype of the "capsule" being tested at Brigham & Women's Hospital, Boston.

According to Dr. Gabor Kosa of TAU's School of Mechanical Engineering, the project is inspired by an endoscopic capsule designed for use in the small intestine. But unlike the existing capsule, which travels at random and snaps pictures every half second to give doctors an overall view of the intestines, the new "wireless" capsules will use the magnetic field of a magnetic resonance imaging (MRI) machine and electronic signals manipulated by those operating the capsule to forge a more precise and deliberate path.

It's a less invasive and more accurate way for doctors to get an important look at the digestive tract, where difficult-to-diagnose tumors or wounds may be hidden, or allow for treatments such as biopsies or local drug delivery. The technology, which was recently reported in Biomedical Microdevices, was developed in collaboration with Peter Jakab, an engineer from the Surgical Planning Laboratory at Brigham and Women's Hospital in Boston, affiliated with Harvard Medical School.

Swimming with the current

What sets this endoscope apart is its ability to actively explore the digestive tract under the direction of a doctor. To do this, the device relies on the magnetic field of the MRI machine as a "driving force," says Dr. Kosa. "An MRI has a very large constant magnetic field," he explains. "The capsule needs to navigate according to this field, like a sailboat sailing with the wind."

In order to help the capsules "swim" with the magnetic current, the researchers have given them "tails," a combination of copper coils and flexible polymer. The magnetic field creates a vibration in the tail which allows for movement, and electronics and microsensors embedded in the capsule allow the capsule's operator to manipulate the magnetic field that guides the movement of the device. The use of copper, a non-ferro magnetic material, circumvents other diagnostic challenges posed by MRI, Dr. Kosa adds. While most magnets interfere with MRI by obscuring the picture, copper appears as only a minor blot on otherwise clear film.

The ability to drive the capsule, Dr. Kosa says, will not only lead to better diagnosis capabilities, but patients will experience a less invasive procedure in a fraction of the time.

Microrobotics of the future

In the lab at the Brigham and Women's Hospital, Dr. Kosa and his fellow researchers have tested the driving mechanism of the capsule in an aquarium inside the MRI. The results have shown that the capsule can successfully be manipulated using a magnetic field. Moving forward, the researchers are hoping to further develop the capsule's endoscopic and signalling functions.

According to Dr. Kosa, a new faculty recruit to TAU, this project is part of a bright future for the field of microrobotics. At the university, his new research lab, called RBM2S, focuses on microsystems and robotics for biomedical applications, and an educational robotics lab, ERL, will teach future robotics experts studying at TAU's School of Mechanical Engineering.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Control MRI Mechanical Engineering Tau electronic signal magnetic field

More articles from Medical Engineering:

nachricht Smartphones as ophthalmoscopes save sight: Cost-effective telemedical eye screening of people with diabetes in India
09.07.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Shorter courses of proton therapy can be just as effective as full courses prostate cancer
08.07.2019 | University of Pennsylvania School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>