Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Million Chances to Save a Life

27.02.2012
To celebrate February as American Heart Month, the News Blog is highlighting some of the latest heart-centric news and stories from all parts of Penn Medicine.
Would you be able to find an automated external defibrillator if someone’s life depended on it? Despite an estimated one million AEDs scattered around the United States, the answer, all too often when people suffer sudden cardiac arrests, is no.

In a Perspective piece published online this week in the journal Circulation: Cardiovascular Quality Outcomes, Penn Medicine emergency physician Dr. Raina Merchant outlines the tremendous potential associated with greater utilization of AEDs in public places. In cases of ventricular fibrillation – a wild, disorganized cardiac rhythm that leaves the heart unable to properly pump blood through the body, which is the leading cause of sudden cardiac death – quick use of an AED and CPR improve a patient’s chance of surviving by more than 50 percent.

But since the devices are sold through wholesalers, manufacturers have no way to track who purchases them and where they’re ultimately placed. That leaves two problems: No reliable way to connect bystanders with AEDs during emergencies, and no way to locate the devices during recalls or for regular servicing and inspection, like the process used to keep fire extinguishers in working order. Without a map of the devices, the more than 300,000 people who suffer cardiac arrest remain in great peril. Nationwide, just over 6 percent of these patients survive.
Merchant, along with her co-author, Dr. David Asch, executive director of Penn’s Leonard Davis Institute of Health Economics, envision a much brighter scenario, involving a massive search for the location of these one million lifesaving AEDs and the creation of an Internet and mobile app-based map to pair the devices with people willing to use them during cardiac arrests. In addition to making the map available via smart phone for bystanders, they also call for providing this information to local 911 dispatchers. A person calling for help after witnessing a cardiac arrest might then hear the following:

“Emergency Medical personnel are on their way. Continue chest compressions. There is an AED in the nearby bookstore, just at the checkout register. If available, send someone who is not performing chest compressions to retrieve the AED.”

Penn Medicine’s MyHeartMap Challenge, now in its third week, is taking a big step toward fulfilling that vision, by calling on Philadelphians to locate and help map all of the city’s AEDs. The 298 teams participating in the contest – who stand to win $10,000 if they’re the person or group to locate the largest number of the devices – are searching for AEDs in public places and snapping pictures of them on a special app for iPhones and Androids. Their submitted photos, tagged with location information will be used to create the type of interactive map Merchant suggests in her paper. Building on recent successes in utilizing crowdsourcing to solve science quandaries, and with a nod toward the public’s increasing reliance on smart phones to provide them with everything from reviews of nearby restaurants to the location of gas stations when their car is running on fumes, the Penn team hopes to tap into the ingenuity and power of today’s ultra-networked society to provide the data needed to put some real power behind the nation’s AEDs.

The fruits of this contest – especially if it can be replicated in other cities across the country – could lead not only to more immediate chances to save lives by putting defibrillators in the right hands at the right time, but also to new avenues for the study of best practices in resuscitation. Among questions a national AED database could help researchers answer: Was the device brought out for a real cardiac arrest? Did the device function properly? What prompted bystanders to play a role in caring for the patient? In the big picture, the Penn researchers hope that increased access to information on AED locations will buoy the nation’s perennially dismal cardiac arrest survival rates.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>