Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 15-minute scan could help diagnose brain damage in newborns

15.11.2018

A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

In a study of over 200 babies at seven hospitals across the UK and the USA, researchers found the brain scan, called magnetic resonance (MR) spectroscopy, predicted damage with 98 per cent accuracy.


Scan one shows the brain of a healthy baby, while scan two shows that of a baby with brain damage. Compared to scan one, scan two shows abnormal brightness in the deep nuclei (in the centre of the brain), which indicates damage.

Credit: Imperial College London

Brain damage affects around one in 300 births in the UK, and is usually caused by oxygen deprivation. However, currently doctors are unable to accurately assess the extent of a newborn baby's brain damage.

Any child suspected of having some type of damage is given an MRI scan shortly after birth. This allows doctors to look at black and white pictures of the brain see if any areas of the brain look lighter than others, as this may suggest damage.

Doctors then use this information to give parents an estimation of the extent of the damage, and the possible long-term disabilities their child may face.

However, this method is only between 60-85 per cent accurate, and relies heavily on the radiologist's individual judgement, meaning the prognosis can vary depending on who assesses the scan, and where the scan is done.

Hence health professionals can only confirm if a child has lasting brain damage when they reach two years old, by assessing whether a youngster has reached their development goals such as walking and talking.

In the new study, led by Imperial College London, scientists used MR spectroscopy to assess the health of brain cells in an area called the thalamus, which coordinates a number of functions including movement, and is usually most damaged by oxygen deprivation.

The scan specifically tests for a compound called N-acetylaspartate - high levels of which are found in healthy brain cells, called neurons. A level of 9-10 is found in healthy neurons, whereas a level of 3-4 indicates damage.

The technology used is the same as that needed for an MRI scan, and only requires the baby to spend an additional 15 minutes in the scanner.

In the new trial, published in the journal Lancet Neurology, the scan was performed at the same time as the routine MRI scan when a baby was between four and 14 days old.

The scan does not carry any additional cost to the NHS, and the data can be easily analysed using special software by any radiographer.

Dr Sudhin Thayyil, study author and Director of the Centre for Perinatal Neuroscience in Imperial's Department of Medicine said: "At the moment parents have an incredibly anxious two-year wait before they can be reliably informed if their child has any long-lasting brain damage.

But our trial - the largest of its kind - suggests this additional test, which will require just 15 minutes extra in an MRI scan, could give parents an answer when their child is just a couple of weeks old. This will help them plan for the future, and get the care and resources in place to support their child's long term development."

In the trial, funded by the National Institute for Health Research and the Medical Research Council, all of the babies had received so-called cooling therapy immediately after birth. This is now a routine treatment for newborns with suspected brain damage, and involves placing a baby on a special mat that reduces their body temperature by four degrees. Evidence has shown that cooling the body can help reduce the extent of brain damage, and reduce the risk of long term disabilities.

The babies then had their brain scan soon after this therapy, and detailed developmental assessment at two years of age. The results suggested the MR spectroscopy at two weeks accurately predicted the level of toddler's development at two years old.

Dr Thayyil added that the scan may also help scientists develop new treatments to tackle brain injury in babies: "At the moment, when doctors are trialling a new therapy that may boost development of children with brain damage, they must wait two years until they can assess whether the treatment is working. They also need to study a large number of babies. But with this new scan, they'll be able to assess this almost immediately, with a much smaller number of infants."

He added that the next step is to roll out the scan in more hospitals in the UK as a clinical tool. "Most NHS hospitals already have the facilities and software to perform this scan, it's just a case of increasing awareness and training."

"I remember the terror when we didn't hear a cry" - Christine's story

Christine Reklaitis gave birth to her daughter Georgiana in 2016, and took part in the trial at Imperial College Healthcare NHS Trust in London.

She said: "I had a healthy pregnancy, but during labour my midwife struggled to find Georgiana's heartbeat, and she was born shortly afterwards via emergency c-section.

I remember the terror when we didn't hear a cry after she was born, but thankfully she was breathing, and was whisked away to intensive care, and placed in an incubator. The doctors told us

they were going to cool her down, which we thought sounded unusual, but were told it would reduce her risk of brain damage.

We were asked to take part in a trial and quickly agreed. We felt our daughter's treatment benefitted from past studies, so we wanted to help develop future treatments.

After the first scan we were told the levels of a compound in her brain cells were low, but were incredibly relieved when a scan a few weeks later showed the levels had increased to normal levels.

She has since hit all her development goals, and is a normal two-year-old, and full of energy. We joke the cooling treatment stayed with her, as she never wants to wear a coat when we go outside.

We are so pleased we took part in this trial - and hope the research helps other families."

Kate Wighton | EurekAlert!

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>