Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s longest bus premieres in Dresden

24.08.2012
On August 22nd, 2012, the new AutoTram® Extra Grand was presented to the public for the first time in the historic city center of Dresden.
The premiere of »the world’s longest bus« attracted many visitors and press. Earlier in the afternoon, politicians and researchers visited the vehicle, including the German Minister of Education and Research Prof. Anette Schavan, the Saxon Prime Minister Stanislaw Tillich and Prof. Reimund Neugebauer, director of the Fraunhofer Institute for Machine Tools and Forming Technology IWU.

The multi-unit vehicle with rubber tires is more than 30 meters long and has a capacity of 256 passengers. It has been developed and constructed within the »Innovative Regionale Wachstumskerne« research program, which was initiated by the German Federal Ministry of Education and Research (BMBF).

The AutoTram® technology is based on a vehicle concept developed by the Fraunhofer IVI, combining the advantages of rail and road-bound transport systems. So far, the concept had only been used for research purposes, but is now applied in practice. The innovative public transport vehicle has been developed in joint research with the Institute of Electrical Power Engineering, TU Dresden, and Wittur Electric Drive GmbH, who were in charge of developing the high efficient drive engines, as well as the Dresden-based M&P motion, control and power electronics GmbH, who contributed power electronics, the vehicle computer and supercapacitors. The Dresdner Verkehrsbetriebe (DVB) AG were responsible for consulting in transportation and traffic sciences. The type approval was carried out by the DEKRA and the AutoTram® Extra Grand was constructed by bus manufacturer Göppel Bus GmbH in Thüringen.

Due to its high transport capacity, the AutoTram® Extra Grand bridges the gap between conventional city buses and trams, offering new possibilities for an environmental friendly public transport. The vehicle is perfectly suitable for the use in BRT (Bus Rapid Transit) systems. These can be found in many cities in Asia and South America, where rail-bound solutions are often not realistic due to high costs, space or time restrictions.

Another significant technical feature, apart from the vehicle’s dimensions, is the train-like guidance of the vehicle. The AutoTram® Extra Grand has four guided axles, three of which can be controlled by means of a secure electrohydraulic actuator system. With the multi-axle steering system, the vehicle can be maneuvered like a 12-meter bus both forward and reverse. Fraunhofer IVI developed the control algorithms and the battery storage system, enabling all-electric operation for a distance of 8 kilometers. With the compact range extender, batteries can be recharged on route. By means of a predictive energy management, energy-efficient operation is guaranteed.

The AutoTram® Extra Grand is not only the world’s longest bus today, but it also represents a future-oriented public transport system in large city areas.

AutoTram Extra Grand

Contact

Fraunhofer Institute for Transportation
and Infrastructure Systems IVI
Dr. Matthias Klingner
Director
Phone +49 (0)351/ 46 40-640
matthias.klingner@ivi.fraunhofer.de

Elke Sähn
Public Relations and Press

Phone +49 (0)351/ 46 40-612
presse@ivi.fraunhofer.de

Elke Sähn | Fraunhofer-Institut
Further information:
http://www.ivi.fraunhofer.de/en
http://www.autotram.info/en.html

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>