Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Stuttgart draws up guides for medium-sized enterprises

22.06.2015

Logistics without clock and belt

For over 100 years assembly in the automobile industry has gone in cycle sequences in which it is precisely determined when, where and how a certain work step is to take place.


To make production logistics more flexible, current standardised load carriers (below) are to be equipped with communication technology and supplemented with small trays.

Photo: University Stuttgart/IFT

For production logistics this means that the materials must also be delivered to the conveyor belt according to this cycle. This system has led to goods being able to be produced efficiently, quickly and above all cost effectively.

However, this is too rigid for the requirements of today’s adaptable production with increasingly numerous product variations in increasingly smaller quantities. In the framework of the research campus ARENA2036 the Institute of Mechanical Logistics and Logistics (IFT) at the University of Stuttgart is working on solutions enabling more flexibility and changeability and is drawing up a guideline with the support of the State of Baden-Württemberg for smaller and medium-sized companies. This could lead to electric cars in particular becoming cheaper.

Today in the automobile industry vehicles go through the final assembly from a clocked belt or similar conveyor technology. Specific parts are made available and assembled at each assembly place until the complete vehicle ultimately leaves the production hall.

This system has its strengths if the assembly stations are to be supplied with similar or identical materials in larger quantities – in borderline cases with all parts that are needed for the vehicles to be assembled in the next shift. In view of a greatly increased number of variations in the automobile industry (for example of the 1.1 million sold Mercedes A-Class cars from the latest model range only two were identical), however, clocked production reaches its limits: here only the parts are to be made available that are needed for the assembly of a specific vehicle, which leads to an explosive increase in logistics costs.

The development of electro mobility aggravates this issue since the complexity in production increases further with the parallel production of hybrid and electric vehicles – a reason for electro vehicles being disproportionately expensive. The Stuttgart scientists want to overcome this hurdle through using innovative assembly stations, individual material provision concepts and improvements in the changeability of production. The findings are to be transferred to other areas of the producing industry.

One of the centrepieces of the logistic solutions developed at IFT form intelligent, self-controlling load carriers as well as innovative storage elements. The load carriers common in the automobile industry of the small load carrier type with a size of 600 x 400 x 280 millimetres, of which around 30 million items are in circulation, do not communicate and are lined with disposable inlays to protect the transported goods. Future load carriers in contrast are to be padded with an innovative filling material in which an RFID tag as well as a position finding unit are integrated.

The equipping of the load carriers with communication and position finding systems enable the localisation of the carrier in the room as well as the data exchange and the integration of the carrier in the overall control of the assembly plant. Since the dimensions of the current small load carriers for the single delivery of model components in addition are too large and give away transport capacities, the IFT is devising trays on the basis of the basic small load carrier dimensions in which smaller containers can be used.

Arranged in bars, the trays and small load carriers are to be received in future by innovative warehouse elements and handled automatically. The conveyance is done with the help of driverless transport vehicles (FTF).

In order to keep the model number of these transport appliances low and to guarantee a high level of utilisation of the units in operation, a universal concept is to be developed that is based on the principle of a carrier platform with exchangeable accessory equipment and has various functional interfaces. The special feature of this new automatic warehouse is providing material “just in real time“ (JIR), since the current delivery “just in sequence“ (JIS) cannot react quickly enough to changes.

The scientists from the IFT are preparing their research results into a freely accessible guideline for medium-sized companies that show the implementation of the innovative logistics concepts including their connection to linked load carriers and a bar concept.

The guideline is also to focus on why changes are necessary in production logistics in order to cope with an increasing diversity of models. The Ministry for Finances and Economic Affairs Baden-Württemberg funds the project with around 160,000 Euros.

Further information:
Prof. Karl-Heinz Wehking, University of Stuttgart, Institute for Conveyor Technology and Logistics, Tel. 0711/685-83770, Email: Karl-Heinz.Wehking (at) ift.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Further information:
http://www.uni-stuttgart.de/

More articles from Transportation and Logistics:

nachricht German-British Research project for even more climate protection in the rail industry
28.05.2020 | Technische Universität Dresden

nachricht Delivery drones instead of postal vans?
22.04.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>