Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Subway Control Works With WLAN

29.04.2013
With a new train control system from Siemens, the number of subway trains on a stretch of track can be doubled, which also means twice as many passengers as before.

This development is featured in the current issue of the research magazine Pictures of the Future. The solution was developed by Siemens global research, Corporate Technology (CT).



Because the concept is also suitable for retrofitting into existing stretches, the construction of costly new subway lines can be avoided or postponed. The Trainguard MT system registers the position of each train and automatically adjusts the distance to the following train.

The fixed interval between trains of about three minutes, which subways have used until now, can be reduced to as little as 80 seconds. Trainguard MT is now in operation in several major cities around the world including Beijing, Istanbul and London.

Subways are one of the major arteries of big cities and they transport millions of people every day. But subway construction is a big job. This makes it difficult to adapt subways to increasing passenger volumes. One obstacle to raising the capacity of a subway has been the fixed interval between two trains. This interval is based on maintaining the potential maximum braking distance of the following train, which is typically around one kilometer.

If it were known exactly where each train was and how fast it was going at any given moment, the interval between trains could be adjusted to match the actual required braking distance and the trains could run closer to one another. Until now, the wireless technology needed to maintain an uninterrupted flow of this type of data between the train and the control center has been lacking.

Siemens CT turned to WLAN technology and developed a solution that uses access points installed along the stretch of a subway line. Fiber-optic cables connect these access points to each other and to the control site. In this way a train can stay in contact with the control center.

The access points are placed about 250 meters apart - depending on the subway - and the WLAN communications are configured in such a way that passengers' computers and cell phones don't cause any interference. The system detects the position of a train to within a few centimeters. When a train leaves a stop, the following train gets the green light to pull in as soon as the required interval is reached. If a train brakes, the following train will automatically also be braked if necessary.

In Beijing, Trainguard MT is in operation on two new subway lines, covering a total of 31 kilometers. Every day these trains transport around one million commuters. In Istanbul Siemens retrofitted Trainguard MT into a subway line without interrupting the service.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>