Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sets new distance record for medical drone transport

13.09.2017

Medical samples transported 160+ miles by unmanned aircraft in Arizona desert

Johns Hopkins researchers have set a new delivery distance record for medical drones, successfully transporting human blood samples across 161 miles of Arizona desert. Throughout the three-hour flight, they report, the on-board payload system maintained temperature control, ensuring the samples were viable for laboratory analysis after landing.


Temperature-controlled specimen transport container designed by Johns Hopkins researchers is packed with blood sample test tubes.

Credit: Johns Hopkins Medicine

In a report of the findings, published in the American Journal of Clinical Pathology on Sept. 6, the investigators say the achievement adds to evidence that unmanned aircraft can be an effective, safe and timely way to quickly transport medical samples from remote sites to laboratories.

"We expect that in many cases, drone transport will be the quickest, safest and most efficient option to deliver some biological samples to a laboratory from rural or urban settings," says Timothy Amukele, M.D., Ph.D., assistant professor of pathology at the Johns Hopkins University School of Medicine and the paper's senior author.

"Drones can operate where there are no roads, and overcome conditions that disable wheeled vehicles, traffic and other logistical inefficiencies that are the enemy of improved, timely patient diagnoses and care," Amukele says. "Drones are likely to be the 21st century's best medical sample delivery system." Building on previous work by Amukele's team, the investigators collected pairs of 84 blood samples at the University of Arizona in Tucson, then drove them 76 miles to an airfield.

One sample from each pair was loaded onto a commercially available drone, which flew them 161 miles. The flight took off and landed at the same airfield, on a drone test range. The samples flown by drone were contained in a temperature-controlled chamber designed by the Johns Hopkins team. The other sample of each pair was held in a car at the airfield with active cooling to maintain target temperature. The average temperature of the flown samples was 24.8°C (76.6°F) compared with 27.3°C (81.1°F) for the samples not flown.

Among other precautions, the test was conducted away from populated areas in restricted airspace at an unpopulated military test range that was cleared of other air traffic. The aircraft was under the control of a certified remote pilot, using a radio link between the drone's onboard flight computer and the ground control station. Samples were packed and transported according to International Air Transport Association guidelines. The aircraft used in the study was a Latitude Engineering HQ-40.

Following the flight, all samples were transported 62 miles by car to the Mayo Clinic in Scottsdale, Arizona. All samples were tested for 17 of the 19 most common chemistry and hematology tests. Flown and not-flown paired samples showed similar results for red blood cell, white blood cell and platelet counts and sodium levels, among other results. Statistically significant but small differences were seen in glucose and potassium levels, which also show variation in standard transport methods (e.g. automobile transport). These differences were due to chemical degradation from slightly warmer temperature in the not-flown samples.

The Johns Hopkins team previously studied the impact of drone transportation on the chemical, hematological and microbial makeup of drone-flown blood samples over distances up to 20 miles, and found that none were negatively affected. The team plans further and larger studies in the U.S. and overseas.

"Getting diagnostic results far more quickly under difficult conditions will almost certainly improve care and save more lives," Amukele says.

###

Other authors on this study include Jeff Street of the Johns Hopkins University School of Medicine; Christine LH Snozek and James Hernandez of the Mayo Clinic in Arizona; and Ryan G. Wyatt, Matthew Douglas and Richard Amini of the University of Arizona.

Funding for this study was provided by Peter Kovler of the Blum-Kovler Foundation.

Media Contact

Chanapa Tantibanchachai
chanapa@jhmi.edu
410-502-9433

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Chanapa Tantibanchachai | EurekAlert!

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>