Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens tests Intercity train for Deutsche Bahn in the Climatic Wind Tunnel in Vienna

21.01.2016

ICE 4 defies wind and weather

Rail customers expect to be served by trains that function perfectly from the very first day of service. This is particularly true for the new Intercity platform that will be operated by Deutsche Bahn (DB). Expected to account for around 70 percent of revenue, the ICE 4 will be the backbone of DB's future long-distance service.


The ICE 4 in the Climatic Wind Tunnel – Snow, ice, wind, rain and blazing sun

The new Intercity train from Siemens underwent a 12-week comprehensive testing program at Rail Tec Arsenal (RTA) in Vienna. Here, in the longest climatic wind tunnel in the world, the train had to prove that it can operate flawlessly at speeds up to 200 kilometers an hour, at temperatures ranging from minus 25 to plus 45 degrees Celsius, as well as in snow, ice rain or in blazing sun.

Two ICE 4 trains will enter passenger service in the fall of 2016 as part of a twelve-month period of trial operations. Until then, the trains will be subjected to rigorous testing.

Before the first passengers board the train, however, the ICE 4 has to prove that it can operate even under the most extreme weather conditions, in blazing heat as well as freezing cold.

The tests, conducted at the Climatic Wind Tunnel operated by Rail Tec Arsenal (RTA) in Vienna, subject the train to conditions far more stringent than required by European norms.

Deutsche Bahn commissioned supplementary tests that are specifically designed to ensure that the train's heating, ventilation and air conditioning (HVAC) operate faultlessly.

In addition, tests check if the pantograph moves up and down and functions in ice and snow, if the windscreen wiper keeps the driver's vision free, if the doors open and close smoothly, the folding steps function and the toilets operate without problems.

In May 2011, Deutsche Bahn awarded Siemens a frame contract for up to 300 multiple-unit trains. The first series production trains will enter passenger service with the change of the timetable in December 2017. The trains are initially foreseen for service in Germany, Austria and Switzerland.


Reference Number: IM2016010307MOEN

More pictures:

http://www.siemens.com/press/en/presspicture/?press=/en/presspicture/pictures-photonews/2016/pn201601.php&content[]=MO

Siemens AG
Communications and
Government Affairs
Internal and External Communications
Ellen Schramke
Nonnendammallee 101
13629 Berlin
ellen.schramke@siemens.com

Ellen Schramke | Siemens PhotoNews

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>