Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens tests Intercity train for Deutsche Bahn in the Climatic Wind Tunnel in Vienna

21.01.2016

ICE 4 defies wind and weather

Rail customers expect to be served by trains that function perfectly from the very first day of service. This is particularly true for the new Intercity platform that will be operated by Deutsche Bahn (DB). Expected to account for around 70 percent of revenue, the ICE 4 will be the backbone of DB's future long-distance service.


The ICE 4 in the Climatic Wind Tunnel – Snow, ice, wind, rain and blazing sun

The new Intercity train from Siemens underwent a 12-week comprehensive testing program at Rail Tec Arsenal (RTA) in Vienna. Here, in the longest climatic wind tunnel in the world, the train had to prove that it can operate flawlessly at speeds up to 200 kilometers an hour, at temperatures ranging from minus 25 to plus 45 degrees Celsius, as well as in snow, ice rain or in blazing sun.

Two ICE 4 trains will enter passenger service in the fall of 2016 as part of a twelve-month period of trial operations. Until then, the trains will be subjected to rigorous testing.

Before the first passengers board the train, however, the ICE 4 has to prove that it can operate even under the most extreme weather conditions, in blazing heat as well as freezing cold.

The tests, conducted at the Climatic Wind Tunnel operated by Rail Tec Arsenal (RTA) in Vienna, subject the train to conditions far more stringent than required by European norms.

Deutsche Bahn commissioned supplementary tests that are specifically designed to ensure that the train's heating, ventilation and air conditioning (HVAC) operate faultlessly.

In addition, tests check if the pantograph moves up and down and functions in ice and snow, if the windscreen wiper keeps the driver's vision free, if the doors open and close smoothly, the folding steps function and the toilets operate without problems.

In May 2011, Deutsche Bahn awarded Siemens a frame contract for up to 300 multiple-unit trains. The first series production trains will enter passenger service with the change of the timetable in December 2017. The trains are initially foreseen for service in Germany, Austria and Switzerland.


Reference Number: IM2016010307MOEN

More pictures:

http://www.siemens.com/press/en/presspicture/?press=/en/presspicture/pictures-photonews/2016/pn201601.php&content[]=MO

Siemens AG
Communications and
Government Affairs
Internal and External Communications
Ellen Schramke
Nonnendammallee 101
13629 Berlin
ellen.schramke@siemens.com

Ellen Schramke | Siemens PhotoNews

More articles from Transportation and Logistics:

nachricht 3D mobility: a reality check for flying taxis
08.01.2020 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>