Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop an 'intelligent car' able to learn from his owner’s driving and warn him in case of accident hazard

24.09.2009
The DRIVSCO system, which has had the participation of six European countries, detects “unusual behaviours” in drivers before a curve or an obstacle on the road, and generates signals of alarm
42 per cent of fatal road accidents take place at night, according to information of the European Car Council

Scientists from six European countries, including Spain, have developed a new computer system so called DRIVSCO that allows vehicles to learn from the behaviour of their drivers at the wheel, in such a way that they can detect if a driver presents an “unusual behaviour” in a curve or an obstacle on the road and generates signals of alarm which warn him on time to react.

Un like other similar projects, DRIVSCO goes far beyond a computer vision system for driving assistance. The concept investigated was how to get that a car learns from the user’s driving facing a curve or an approaching intersection, a pedestrian or another vehicle. Regardless the type of driving of the driver, sporty or conservative (as it adapts to his driving), the system obtains a driving behaviour pattern.

Thus, during night driving, if the vehicle detects a deviation in his way of driving in face of a curve, it interprets that it is due t the lack of visibility of the driver (as the driver has a limited visibility of the low beams field, whereas the car’s night vision system is much more powerful and has a longer range). Therefore, it generates signals of alarm to warn the driver of his “unusual behaviour when approaching a curve”, or the detection of a potentially dangerous object, for instance.

Accidents at night
The persons in charge of this project state that 42 per cent of fatal traffic accidents happen at night, according to the data of the European Car Council, “an extremely worrying figure if we consider that traffic drops about a 60% during night hours”. This is due, among other factors, to the reduced visibility during night driving.

The Spanish representation in this project fell on a research group of the Department of Computer Architecture and Technology of the University of Granada (Spain) led by professor Eduardo Ros Vidal. DRIVSCO also has the participation of scientists from Germany (University of Göttingen, University of Münster and the company Hella & Hueck), Denmark (University of Southern Denmark), Lithuania (University Vytautas Magnus), Belgium (Catholic University of Leuven) and Italy (University of Geneva).

The research group of the University of Granada has developed a system of artificial vision (analysis of the scenario) in an only chip. Such device receives input pictures and produces a first “interpretation of the scenario” in terms of depth (3D vision), local movement, image lines, etc, everything in an only electronic chip. This system can be assembled in different types of vehicles in future. In addition, they have used a “reconfigurable hardware”, so that the system can adapt itself to new field of application.

Promising results
During the tests, a group of drivers drove using DRIVSCO system so that the car could learn from their driving style. The car had also a differential GPS incorporated (with several centimetres of precision), detection systems of wheel turns, braking, etc, so that the research groups managed to check in great detail the style of driving in every case and the performance of the system. The first tests have offered promising results and have proved the usefulness of the new concept.

Professor Ros highlights that with this project “we do not intend to develop automatic driving systems (as it would be very difficult for insurance agencies and car companies to come to an agreement in the event of a crash), but advanced driving assistance systems”. DRIVSCO’s final goal is to avoid car accidents and contribute to keep drivers alert, focusing their attention to the maximum.

Part of the results of this project has been published in the renowned scientific journals “IEEE Trans on Image Processing”, “IEEE Trans. on Vehicular Technology” and “IEEE Transactions on Circuits for Video Technology”.

Eduardo Ros Vidal | EurekAlert!
Further information:
http://www.ugr.es

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Microbes to fight fatty liver disease

26.09.2018 | Life Sciences

Diversity in the brain – How millions of neurons become unique

26.09.2018 | Life Sciences

Copper-aluminum superatom

26.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>