Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sometimes, the rubber meets the road when you don't want it to

05.03.2013
Arresting a fleeing vehicle at the push of a button

Back in 2010, the ideas behind a squid's sticky tendrils and Spiderman's super-strong webbing were combined to create a prototype for the first remote device able to stop vehicles in their tracks: the Safe, Quick, Undercarriage Immobilization Device (SQUID). At the push of a button, spiked arms shot out and entangled in a car's axles—bringing a racing vehicle to a screeching halt.*


The Pit-BUL™ is a remotely activated tricked out speed bump that stops target vehicles in their tracks. Credit: PSEMC

The need to stop vehicles remotely was identified by the law enforcement community. With funding from Homeland Security's Science & Technology Directorate, and the expertise of the engineers at Engineering Science Analysis Corporation (ESA), the SQUID prototype was a success. But, the engineers and law enforcement recognized that the SQUID had room for improvement.

"ESA engineers looked at SQUID to identify spiral technologies that could be gleaned from the design. The law enforcement community told us it had to be lighter and smaller," said ESA president Martín Martínez.

Using their smarts, the brainiacs of ESA, their technology and manufacturing partner Pacific Scientific Energetic Materials Company (PSEMC), and S&T, all went back to the Border Patrol agents and police officers operating the security checkpoints asking: what equipment does law enforcement need to operate faster and safer? The answer was simple: take SQUID apart and create two individual devices.

Recently patented and made commercially available, the especially unique Pit-BUL™ and NightHawk™ were the result. They can stop anything from a compact car to a full-size SUV.

Spawned from the original concept of the SQUID, the Pit-Ballistic Undercarriage Lanyard (Pit-BUL™) essentially is a tricked out speed bump. Hidden inside is a set of spikes attached to a net. When deployed, the spikes puncture the tires and the net tangles in the car's axles. Made of easy to combine panels, Pit-BUL™ can be set up for single or double lane coverage.

"If a driver blows through a checkpoint, the agent can press a button and the car's tires are spiked and netted in milliseconds," said Mark Kaczmarek, the SQUID program manager in S&T's Borders and Maritime Security Division. "No high-speed pursuit is needed, and no one's life is put at risk."

Pit-BUL™ can also be equipped with a motion activated sensor for locations needing secondary security. For example, the Pit-BUL™ can be placed near the gate of a facility. If somebody crashes through the gate when no officers are on duty, the sensor activates the Pit-BUL™ to deploy. The alleged gate crasher can be netted and stopped and then apprehended on the spot. PSEMC has performed more than 225 tests that prove Pit-BUL's instantaneous vehicle stopping power. Click here to see it stop a pursuit before it happens: http://www.youtube.com/watch?feature=player_embedded&v=r99VyJtRQIU

Evolved from the arms of the original SQUID, the NightHawk™, was also developed by PSEMC along with its partner, Stop Stick Ltd. The NightHawk™ is a remote-controlled spike strip disguised as a small suitcase. Currently, spike strips are placed by hand in the fleeing driver's path, usually at the last second so as not to impede other traffic. The NightHawk™, placed on the roadside, does not require an officer to stand nearby to deploy the device.

Traditional methods of deploying spike strips by hand in the path of a fleeing driver can put an officer's life in danger, and are not always effective. Martínez explains: "When an officer is radioed that a fleeing vehicle is approaching, they can quickly place NightHawk™ on the side of the road and move a safe distance away. When the target vehicle approaches, before the driver has a chance to react, the officer can remotely trigger the spiked arm to deploy across the street and puncture the vehicle's tires."

Pressing the remote's button a second time retracts the spikes out of the way of oncoming traffic. Within seconds, NightHawk™ can be placed, deployed, and retracted. Click here to see it in action: http://www.youtube.com/watch?feature=player_embedded&v=9h0qKsKaqMQ

"It all comes down to officer safety," said Kaczmarek. "When somebody flees, they put their life, the officers' lives, and nearby pedestrians' or commuters' lives in danger. Pit-BUL™ and NightHawk™ provide law enforcement officers the added safety as well as the ability to halt feeling vehicles from a distance."
"Police departments with a 'no pursuit policy' now have a way to bring cars to a controlled stop," said S&T Deputy Under Secretary Dan Gerstein. "Criminals are caught and police don't have to give chase. These first generation devices are the start of a change in the decades old game of cat and mouse."

* The Small Business Innovation Research (SBIR) Office in the Department of Homeland Security's Science and Technology Directorate (S&T) issued a solicitation for this need and SQUID was the response.

John Verrico | EurekAlert!
Further information:
http://www.hq.dhs.gov

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>