Research Details Mathematical Model for Effectively Screening Airline Passengers

Changes in aviation security policies and operations since the Sept. 11, 2001, terrorist attacks have resulted in every passenger being treated as a potential security risk, with uniform screening of passengers and their luggage.

Screening all passengers the same way is costly and inconvenient for air travelers, according to the research, published in the June 2009 issue of “IIE Transactions.”

“We set out to find a real-time screening methodology that considers both available screening resources and the necessity of being robust in assessing threat levels,” said Laura A. McLay, Ph.D., an assistant professor in the VCU Department of Statistical Sciences & Operations Research. “This paper provides methodology to quickly determine which passengers are high-risk and who is low-risk and screen them accordingly,” McLay said.

McLay co-authored the report with Sheldon H. Jacobson, Ph.D., a professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign, and Alexander G. Nikolaev, Ph.D., a visiting scholar in the Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign.

The researchers considered a risk-based model in which passengers are classified as selectees (high-risk) or non-selectees (low-risk). Screening procedures are in place for each classification and selectees would undergo additional screening.

The challenge is that passengers arrive at the airport one at a time and how risky each passenger is becomes known only when they check in for their flight. The model’s objective is to use these passenger risk levels to determine the best policy for screening passengers to detect threats in the system given there are limited screening resources.

“If you only can label 100 passengers as high-risk due to screening capacity limitations, then ideally you’d like to pick the 100 passengers with the highest risk scores,” McLay said. “But since you can’t look into the future and know exactly who is going to arrive, you have to look to make some difficult choices in real-time. Our model provides a methodology for translating the risk scores to a screening decision.”

The research was funded by the National Science Foundation, the Air Force Office of Scientific Research and the Department of Homeland Security.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Media Contact

Mike Porter Newswise Science News

More Information:

http://www.vcu.edu

All latest news from the category: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors