Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Addresses Security of Inland Waterways

07.09.2011
Transportation researchers at the University of Arkansas are working to develop a national decision-support system to help local, state and federal law-enforcement and emergency-management agencies identify commercially important rivers and infrastructure that may be especially vulnerable to a terrorist attack or natural disaster.

“We’re trying to develop a fundamental understanding of the critical interdependence of multi-modal and intermodal transportation systems as they relate to the nation’s inland waterway system,” said Heather Nachtmann, associate professor of industrial engineering and director of the Mack-Blackwell Rural Transportation Center. “Specifically, we want to enable law-enforcement and emergency-management agencies by providing vital information about commercially important rivers and the various infrastructure connected to these rivers.”

The United States has approximately 12,000 navigable miles of commercially used rivers that may be vulnerable to attack, natural disaster or accidental events, Nachtmann said. If such an event were to occur, commercial traffic on these rivers could not be quickly or easily replaced by other modes of transportation, such as rail or trucking, to re-route goods and services. The loss of these waterways and related infrastructure, such as bridges, canal locks and pipelines, would have immediate and adverse social and economic impacts on a region or possibly the entire nation.

With $200,000 in initial funding from Homeland Security, Nachtmann and colleagues at the Mack-Blackwell Center are developing a system, called Supporting Secure and Resilient Inland Waterways, that they hope will evolve into a prototype for the decision-support system. The project includes geospatial data, computer-based cargo prioritization and freight-routing models, and an emergency response model for inland waterway transportation systems. The researchers recently received $220,000 in additional funding to continue the project.

A primary goal of the project is to understand the interdependence of transportation systems that use water, land and rail for shipping goods. Specifically, the researchers seek to quantify the impact of this interdependence on the vulnerability and resiliency of inland waterway transportation.

“Vulnerability and resilience are ‘two sides of the same coin,’ as both represent the capability of the system to withstand threats,” Nachtmann said. “Vulnerability represents where and how the system can be affected by threats, whereas resilience represents the ability of the system to recover from those threats.”

Previously, Nachtmann and researchers at the Mack-Blackwell Center conducted a seminal study on the security of U.S. rural transportation networks. This study provided an efficient tool to assess the vulnerability of rural transportation assets and was designed to help officials develop and implement plans for emergency preparedness.

Authorized by the Intermodal Surface Transportation Efficiency Act of 1991, the Mack-Blackwell Rural Transportation Center develops comprehensive research, education and training in rural transportation systems. As a Department of Homeland Security National Transportation Security Center of Excellence, the center is dedicated to solving critical scientific and technological issues related to transportation security.

Nachtmann is holder of the John L. Imhoff Endowed Chair of Industrial Engineering in the College of Engineering at the University of Arkansas.

Heather Nachtmann | Newswise Science News
Further information:
http://www.uark.edu

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>