Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European first in aerospace engineering

19.01.2007
Europe’s first state-of-the-art waterjet machining technology centre is set to open at The University of Nottingham.

The School of Mechanical, Materials and Manufacturing Engineering is joining forces with Rolls Royce, the East Midlands Development Agency (emda) and the Midlands Aerospace Alliance to establish the £1.1 million centre, which will explore how the technology can be used to create parts for the aerospace industry.

Waterjet cutting technology is one of the fastest growing machine tool processes in the world, as the equipment is versatile and easy to operate. However, in the UK the process has been predominantly limited so far to ‘flat bed’ techniques — cutting two dimensional objects from sheets of raw material.

Engineers at the new centre will use a six-axis waterjet machine, capable of cutting three dimensional parts from blocks of metal, to develop new processes and techniques.

“It’s a method that’s particularly suited to aerospace engineering,” said Professor Ian Pashby, who leads the project. “The metals used within the industry are difficult to cut and machine using other methods. Waterjet technology is very precise and adaptable — it can even be used to cut food.”

The waterjet process is also more environmentally-friendly than other machine cutting techniques. The six-axis waterjet can be used to create ‘pockets’ within blocks of metal that are essential to the manufacture of aerospace parts. Currently, corrosive acids are used to do this, which must then be disposed of separately. The waterjet machine uses just water and grit. “Which is not as nasty as the chemicals used elsewhere,” said Professor Pashby.

Stephen Burgess, Rolls-Royce Manufacturing Process and Technology Director, added: “Waterjet manufacturing can be and has been used to reduce the cost and environmental impact of producing and refurbishing our components. It is suitable for many commodities in our supply chain as well as processing next generation materials and structures. The machine at the University of Nottingham will allow us and the aerospace industry to research and develop solutions to a range of manufacturing challenges.”

A £492,000 grant from emda has been used to purchase new equipment. Rolls Royce and the University are supporting technical development at the centre. The centre is unique in UK engineering and is the first time the technology has been used for the aerospace industry outside of the US. It will be an important resource for the engineering and manufacturing businesses based in the East Midlands, making them more competitive within the global aerospace market.

Mike Carr, emda's Executive Director of Business Services, commented: "In a global economy where the scope to compete on a cost basis is increasingly limited, innovation is crucial in maintaining the competitive advantage. We are pleased to support this project, and recognise that Rolls Royce and the University of Nottingham - alongside other Universities and businesses in the East Midlands - are leading the way in developing new and exciting technologies, contributing to the vision of a flourishing region by 2020."

The centre will be launched at the School of Mechanical, Materials and Manufacturing Engineering on University Park on Wednesday 24th January.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>