Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perforating aircraft wings with minute holes could make for more efficient flying

14.01.2002


One way to make aeroplanes fly more efficiently is to drill millions of tiny holes in the leading edges of the wings. Like the dimples on a golf ball this has the effect of reducing drag. However, producing these holes on a manufacturing scale is not yet commercially feasible.

Researchers at Heriot-Watt University, funded by the Engineering and Physical Sciences Research Council, and the aerospace company BAE SYSTEMS, have carried out a series of fundamental studies on drilling such holes using laser beams. The results of the work are being assessed by BAE SYSTEMS to determine whether the airflow characteristics of holes produced in this way are suitable.

Dr Duncan Hand is a member of the research team. “It’s been known for a long time that arrays of millions of holes, 50 or 60 micrometres in diameter, on the leading edge of aircraft wings can improve the air flow characteristics around the wing,” he says. “But there’s been no cost-effective way of producing these holes accurately, quickly and cheaply – it is important to justify the increased manufacturing costs against any improvement in the aircraft’s efficiency.”



While conventional mechanical drilling techniques are insufficiently accurate and too slow for holes of this size and in these numbers, using lasers to drill the holes might be a feasible option. Here the energy of the laser melts or vaporises the metal, leaving a hole. By splitting the laser beam it would be possible to drill many holes simultaneously.

“If laser drilling is to be considered it’s necessary to know what sort of laser pulse is best, how much energy is needed, what are the most appropriate conditions – all these factors are important,” says Dr Hand.

The Heriot-Watt team has been examining two ways of laser drilling. One is using the laser in a ‘long pulse’ mode, where the pulse of laser energy lasts for around a millisecond. The other is a ‘short pulse’ mode, where the laser pulses are in the range of nanoseconds.

“For the short pulse mode you need many pulses to drill the hole, whereas for the longer pulse mode you only need a single pulse,” says Dr Hand. “While the shorter pulses produce holes which have more geometric uniformity, they take longer to drill. We also found that because the short pulses have a very high peak power, they tend to ionise the gases they come into contact with – both the air layer on the surface of the material and the vaporised metal.” This ionised gas, or plasma, can block a significant proportion of the laser energy.

The main issue with drilling with the longer pulse lasers is that the holes are less uniform. “There is a lot of interest in the variability of geometry of the holes,” says Dr Hand. “We have found that you can control certain parameters in the process to minimise the variability between holes, but there will always be an intrinsic variability. The main question is whether this variability is acceptable. That is something which is now being assessed.”



Jane Reck | alphagalileo

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>