Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perforating aircraft wings with minute holes could make for more efficient flying

14.01.2002


One way to make aeroplanes fly more efficiently is to drill millions of tiny holes in the leading edges of the wings. Like the dimples on a golf ball this has the effect of reducing drag. However, producing these holes on a manufacturing scale is not yet commercially feasible.

Researchers at Heriot-Watt University, funded by the Engineering and Physical Sciences Research Council, and the aerospace company BAE SYSTEMS, have carried out a series of fundamental studies on drilling such holes using laser beams. The results of the work are being assessed by BAE SYSTEMS to determine whether the airflow characteristics of holes produced in this way are suitable.

Dr Duncan Hand is a member of the research team. “It’s been known for a long time that arrays of millions of holes, 50 or 60 micrometres in diameter, on the leading edge of aircraft wings can improve the air flow characteristics around the wing,” he says. “But there’s been no cost-effective way of producing these holes accurately, quickly and cheaply – it is important to justify the increased manufacturing costs against any improvement in the aircraft’s efficiency.”



While conventional mechanical drilling techniques are insufficiently accurate and too slow for holes of this size and in these numbers, using lasers to drill the holes might be a feasible option. Here the energy of the laser melts or vaporises the metal, leaving a hole. By splitting the laser beam it would be possible to drill many holes simultaneously.

“If laser drilling is to be considered it’s necessary to know what sort of laser pulse is best, how much energy is needed, what are the most appropriate conditions – all these factors are important,” says Dr Hand.

The Heriot-Watt team has been examining two ways of laser drilling. One is using the laser in a ‘long pulse’ mode, where the pulse of laser energy lasts for around a millisecond. The other is a ‘short pulse’ mode, where the laser pulses are in the range of nanoseconds.

“For the short pulse mode you need many pulses to drill the hole, whereas for the longer pulse mode you only need a single pulse,” says Dr Hand. “While the shorter pulses produce holes which have more geometric uniformity, they take longer to drill. We also found that because the short pulses have a very high peak power, they tend to ionise the gases they come into contact with – both the air layer on the surface of the material and the vaporised metal.” This ionised gas, or plasma, can block a significant proportion of the laser energy.

The main issue with drilling with the longer pulse lasers is that the holes are less uniform. “There is a lot of interest in the variability of geometry of the holes,” says Dr Hand. “We have found that you can control certain parameters in the process to minimise the variability between holes, but there will always be an intrinsic variability. The main question is whether this variability is acceptable. That is something which is now being assessed.”



Jane Reck | alphagalileo

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>