Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wind tunnel aimed at making airplanes quieter to those on ground

23.11.2005


As airline travel peaks for the Thanksgiving holiday, a newly completed wind tunnel at the University of Florida may help reduce the noise of commercial airplanes as they fly over homes and neighborhoods.



The tunnel is one of only a handful in the country and currently the largest at a university designed specifically to reduce noise from planes passing overhead and landing. Engineers will use the $400,000 tunnel to learn how to reduce the noise caused by the flow of air over wings, flaps and landing gear – the primary sources of the annoying sound that reaches people on the ground when planes are landing.

“During approach for landing, the dominant noise comes from the airframe as opposed to the jet engines,” said Lou Cattafesta, a UF associate professor of mechanical and aerospace engineering. “We need to understand where the noise is coming from, how it is generated and how we can reduce it. That’s what this facility is geared toward doing.”


The wind tunnel, completed this spring after two years, is timely. Air travel is increasing worldwide, spurring the construction and expansion of airports and increasing noise-related problems, Cattafesta said. Also, engineers have reduced jet engine noise to an extent that it now makes sense to focus attention on the noise from other aircraft components.

“With airframe noise, as little as 10 years ago, very few people cared,” Cattafesta said. “But today’s engines have gotten so quiet during landing, airframe noise is what you hear.”

The tunnel, called “anechoic” because it is designed to minimize echoes, is one of only two at U.S. universities aimed at addressing this problem. It is larger and faster than its counterpart at the University of Notre Dame. Virginia Tech currently is refurbishing its large aerodynamic stability wind tunnel to make it suitable for airframe noise studies.

UF’s tunnel is housed in a soundproof room in one of UF’s mechanical and aerospace engineering buildings. The room’s walls and ceiling and even the door are covered with 3-foot-long fiberglass wedges designed to absorb 99 percent of the sound the engineers are concerned with. Anyone inside the tunnel must speak loudly to be heard by someone just a few feet away.

The tunnel itself is composed of a reinforced fiberglass inlet separated by an open 6-foot-long test section from an acoustically lined outlet that collects and diffuses the wind.

The chamber is not large enough to accommodate full-scale aircraft parts, so engineers plan to use scale models. They will place the models, expected to be one-tenth to one-fifth the size of the real thing, in the chamber, then measure the flow and noise they create – a noise intended to be untarnished either by unrelated noise from outside or echo effects inside.

“If I put something in the air flow, that’s what I want to hear, and that’s the only thing I want to hear,” Cattafesta said.

A 300-horsepower fan pulls air through the tunnel. It is located outside the building on its own concrete pad and foundation, which ensures its noise and vibration don’t contaminate experiments. The fan is capable of moving air at speeds of up to 170 mph, the typical speed of most commercial jets as they approach an airport for landing, Cattafesta said.

The soundproof room, built by Eckel Industries, was completed in 2002. But UF faculty including Mark Sheplak and Bruce Carroll and graduate and undergraduate students pitched in to design and build the tunnel. Otherwise, Cattafesta said, it would have been prohibitively expensive. NASA Langley provided the bulk of the funding for the project.

Mechanical and aerospace engineering doctoral students Jose Mathew and Chris Bahr said the toughest challenge was crafting 60 airfoils that turn the air flow 90 degrees as it leaves the building. The team needed to make that turn to fit the tunnel into the available space, and the fiberglass and rubber-filled vanes make the process as streamlined and quiet as possible, they said.

Cattafesta said engineers have long designed airplanes to be safe, reliable, fuel-efficient comfortable for their occupants. Traditionally, he said, “noise is generally not something you worry about until you hear it.”

But thanks to better composite materials and sophisticated computer design tools, that’s changing, he said, and the UF tunnel dovetails with that trend.

“It’s clear that by re-engineering things better and better we have an opportunity to reduce the noise,” he said. “We’re really putting ourselves in a position where we can experimentally look at these questions.”

Lou Cattafesta | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>