Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wind tunnel aimed at making airplanes quieter to those on ground

23.11.2005


As airline travel peaks for the Thanksgiving holiday, a newly completed wind tunnel at the University of Florida may help reduce the noise of commercial airplanes as they fly over homes and neighborhoods.



The tunnel is one of only a handful in the country and currently the largest at a university designed specifically to reduce noise from planes passing overhead and landing. Engineers will use the $400,000 tunnel to learn how to reduce the noise caused by the flow of air over wings, flaps and landing gear – the primary sources of the annoying sound that reaches people on the ground when planes are landing.

“During approach for landing, the dominant noise comes from the airframe as opposed to the jet engines,” said Lou Cattafesta, a UF associate professor of mechanical and aerospace engineering. “We need to understand where the noise is coming from, how it is generated and how we can reduce it. That’s what this facility is geared toward doing.”


The wind tunnel, completed this spring after two years, is timely. Air travel is increasing worldwide, spurring the construction and expansion of airports and increasing noise-related problems, Cattafesta said. Also, engineers have reduced jet engine noise to an extent that it now makes sense to focus attention on the noise from other aircraft components.

“With airframe noise, as little as 10 years ago, very few people cared,” Cattafesta said. “But today’s engines have gotten so quiet during landing, airframe noise is what you hear.”

The tunnel, called “anechoic” because it is designed to minimize echoes, is one of only two at U.S. universities aimed at addressing this problem. It is larger and faster than its counterpart at the University of Notre Dame. Virginia Tech currently is refurbishing its large aerodynamic stability wind tunnel to make it suitable for airframe noise studies.

UF’s tunnel is housed in a soundproof room in one of UF’s mechanical and aerospace engineering buildings. The room’s walls and ceiling and even the door are covered with 3-foot-long fiberglass wedges designed to absorb 99 percent of the sound the engineers are concerned with. Anyone inside the tunnel must speak loudly to be heard by someone just a few feet away.

The tunnel itself is composed of a reinforced fiberglass inlet separated by an open 6-foot-long test section from an acoustically lined outlet that collects and diffuses the wind.

The chamber is not large enough to accommodate full-scale aircraft parts, so engineers plan to use scale models. They will place the models, expected to be one-tenth to one-fifth the size of the real thing, in the chamber, then measure the flow and noise they create – a noise intended to be untarnished either by unrelated noise from outside or echo effects inside.

“If I put something in the air flow, that’s what I want to hear, and that’s the only thing I want to hear,” Cattafesta said.

A 300-horsepower fan pulls air through the tunnel. It is located outside the building on its own concrete pad and foundation, which ensures its noise and vibration don’t contaminate experiments. The fan is capable of moving air at speeds of up to 170 mph, the typical speed of most commercial jets as they approach an airport for landing, Cattafesta said.

The soundproof room, built by Eckel Industries, was completed in 2002. But UF faculty including Mark Sheplak and Bruce Carroll and graduate and undergraduate students pitched in to design and build the tunnel. Otherwise, Cattafesta said, it would have been prohibitively expensive. NASA Langley provided the bulk of the funding for the project.

Mechanical and aerospace engineering doctoral students Jose Mathew and Chris Bahr said the toughest challenge was crafting 60 airfoils that turn the air flow 90 degrees as it leaves the building. The team needed to make that turn to fit the tunnel into the available space, and the fiberglass and rubber-filled vanes make the process as streamlined and quiet as possible, they said.

Cattafesta said engineers have long designed airplanes to be safe, reliable, fuel-efficient comfortable for their occupants. Traditionally, he said, “noise is generally not something you worry about until you hear it.”

But thanks to better composite materials and sophisticated computer design tools, that’s changing, he said, and the UF tunnel dovetails with that trend.

“It’s clear that by re-engineering things better and better we have an opportunity to reduce the noise,” he said. “We’re really putting ourselves in a position where we can experimentally look at these questions.”

Lou Cattafesta | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>