Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrating Rapid and Cost-Effective Deployment of Wireless Networks for Real-Time Traffic Data Acquisition

26.07.2001


The Problem

Considerable progress has been made in basic research and software development for modeling traffic flow. However, user-friendly and affordable services which could prevent a car driver from getting stuck in a traffic jam are not yet as effective as they could be.
Dynamic guidance covering the major highways has already been implemented in many European countries. On secondary roads, and especially across major urban areas, car driving during the rush-hour often looks more like blind-flying. At present, navigation with dynamic guidance is not available with an acceptable quality-of-service beyond the highway exits.
The reason: In Europe’s densely populated areas, real-time traffic data is not yet available with sufficient spatial and temporal resolution. The urban network topology is highly complex, thus requiring an enormous number of observation points. Cost estimates based on today‘s sensor and communication technology, do not justify to invest in full coverage for traffic data acquisition.

The Wireless Solution to be demonstrated


Drawing upon sound experience with wide-area data collection (early-warning systems for radioactivity), a new wireless networking technology for real-time traffic data acquisition has been proposed. This approach leads to really compact traffic sensors - hence called autonomous probes.
As these probes can operate for five years with their first set of batteries, there would be practically no service requirement. Due to their small size, these sensors can be fixed anywhere on existing infrastructure (traffic signs, street illumination). The sensor employs optical techniques to evaluate the local traffic condition. Short packages of relevant parameters are transmitted to a base station receiver. The radio link connects up to 60 km in one single hop.


The "Travelling" Pilot Project

We intend to provide temporary installations (3 months) of a fixed network for real-time traffic data acquisition in different regions successively. During the demonstration, typically 100 traffic sensors could be installed in a radius of 60 km around the base station receiver (Note: the base station’s capacity is rated for connecting up to 1000 traffic sensors).
The technical part of the installation of a base station receiver will be accomplished in one single day, the installation of a sensor will require half an hour maximum per site - these estimates exclude any formal requirements (bureaucracy).

Potential Locations

The first installation, envisioned to start end of the year 2002, will be set up in the Rhein/Main region. Sensors will be deployed all over the area, including the cities of Frankfurt, Offenbach, Hanau, Darmstadt, Mainz, Wiesbaden, etc.
Afterwards, we intend to continue with the pilot project in Berlin, Paris, London, Los Angeles (USA), Moscow (CIS) and eventually other cities depending on the encouragement and "open doors" by the respective local authorities.

Partners invited

Our part of the pilot project will be limited to provide the traffic-related raw-data stream in real-time, i.e. we take responsibility from the roll-out of the hardware (sensors and base station) to the administration of the data base server (ODBC). Consequently, we hope to attract partners of the following type:

  • European federal or local authorities, public or private institutions, PPPs etc. with active involvement in regional or urban traffic management
  • R&D institutions, software or consulting firms in order to showcase their products for real-time traffic modeling, traffic control, visualisation (GIS) etc.
  • Service providers or content providers who intend to test the acceptance of their telematics-related services
  • Systems integrators in the wireless or IT business, in order to get first-hand experience with a novel wide-area data acquisition technology

Please contact us immediately, in order to prepare for the current subject: IST, Information Society Technologies, Research, Technology Development and Demonstration under the Fifth Framework Program, Calls for Proposals, 7th Round

_______________________________________________________________


Contact: Volker Genrich (CEO)
Company: Genitron Instruments GmbH
Address: Heerstraße 149,
D-60488 Frankfurt am Main
Phone/fax: +49-69/976 514-0, +49-69-765 327
e-mail: Homepage: www.genitron.de and
www.red-systems.com


| Genitron Instruments

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>