Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First diesel military motorcycle to hit the road

04.11.2004


A unique technology partnership between Cranfield University and California-based Hayes Diversified Technologies (HDT) has created the world’s first production diesel military motorbike – and the first bike of any kind with a purpose-designed diesel power unit.



An initial order for 522 diesel motorcycles has already been placed by the US Marines. Delivery is due to commence in early 2005. In addition, keen interest is being shown by the US Army, the UK Ministry of Defence and other NATO forces. John Crocker worked alongside project leader Dr Stuart McGuigan of the Engineering Systems Department, Cranfield University at Shrivenham, Oxfordshire to design the diesel power unit.

The challenge was to come up with a low technical risk design that was sufficiently light and powerful, and with an engine speed (RPM) range wide enough to give the level of performance required for use as a tactical vehicle. John said: "The motorcycle also had to meet strict NATO requirements for all armed forces to operate their entire inventory of vehicles and powered equipment on either diesel fuel or aviation grade kerosene. "This capability has major logistic advantages in obviating the need to carry other fuels to battle. And their lower flammability, in comparison with petrol, also greatly reduces fire hazards."


This is a ‘world first’, in that the team was able to design and develop a motorcycle engine powerful enough to be used on the battlefield for reconnaissance, policing and courier duties as well as for on-road and off-road performance.And so powerful is the motorcycle that in September 2004 it set the world’s first land speed record for a diesel fuelled motorcycle.

Fred Hayes, founder of HDT, who was in the saddle at the world famous Bonneville Salt Flats, Utah, said: "The event was marred by rain the previous week and by poor track conditions, which limited the top speeds due to soft, wet salt. The normally aspirated bike was officially timed by the AMA at 85.466mph, against our calculated top speed of 86mph with production gearing. The calculated speed was at sea level (4350ft) on hard pavement. We’re delighted with the result. If we’d had an option for gearing and more track time, we may have broken the 90mph barrier."

The production motorcycle is based on the running gear of a Kawasaki KLR650 petrol-engine trail bike. The engine of the diesel motorcycle is a liquid cooled, single cylinder four- stroke which displaces 584 cm³ and currently produces some 21 kw (28 bhp). It is a double overhead camshaft design, with a four-valve cylinder head. A multi-cylinder engine was rejected as unnecessary because of the increased weight and because diesel engines work less efficiently in small cylinder sizes.

Cranfield University and HDT beat off stiff competition for the US Marines contract, including European manufacturers as well as the well established Harley Davidson that had teamed up with Lockheed. Fred does not rule out that the motorcycle may be made available for the consumer market. "Although the motorcycle is about 20-30% more expensive than a comparative conventional motorcycle, there would be cost savings for riders and environmental benefits in that the diesel motorcycle can do 110 miles per gallon - a little over twice the range of a conventional motorcycle," said Fred.

Ardi Kolah | alfa
Further information:
http://www.cranfield.ac.uk

More articles from Transportation and Logistics:

nachricht 3D mobility: a reality check for flying taxis
08.01.2020 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>