Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New radar system may help airplanes avoid in-flight icing

11.03.2004


The buildup of ice on airplanes in flight is a major winter hazard for small and commuter planes. But scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., are testing a new system this month that may pinpoint water droplets in clouds that cause icing, potentially enabling pilots to avoid dangerous areas.

The system, known as S-Polka, combines two existing radars that use different wavelengths. By studying the differences between the images that are reflected back to each radar, scientists hope to find tiny water droplets that are difficult to distinguish using either radar alone. The project is funded by the National Science Foundation (NSF), which is NCAR’s primary sponsor, and the Federal Aviation Administration (FAA).

"NSF continues to invest in fundamental science while recognizing opportunities for the broader impacts of the research it supports," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "This new effort is a clear link between knowledge that benefits society and fundamental studies of our atmosphere."



"This will take out a lot of the guess work," explains Marcia Politovich, director of NCAR’s icing program. "We think it will show exactly where the water is. That information could ultimately turn into an important warning system for pilots."

Scientists and engineers at NCAR are deploying S-Polka through the end of March at NCAR’s Marshall facility southeast of Boulder. The system consists of a powerful polarized radar, known as S-Pol, which operates at a frequency of 3,000 MHz, and a polarized Ka-band radar, which operates at 35,000 MHz. The S-Pol radar produces detailed images of clouds and precipitation, whereas the Ka-band radar can detect weaker clouds that are not precipitating. By comparing the images from each radar, researchers hope to find areas in clouds that harbor water droplets.

Finding cloud water droplets has long posed a scientific challenge. The droplets are 50 microns or less in diameter, just one-tenth the size of raindrops. They may remain in liquid form even when the surrounding air temperature drops below freezing. The droplets are most dangerous at that time because they adhere to aircraft wings and then freeze, reducing the plane’s aerodynamic properties.

Unfortunately, existing radar often cannot detect the droplets if they are surrounded by larger raindrops or snow. Even if small cloud particles are detected, a radar signal cannot indicate whether they are droplets or ice crystals.

"When it comes to cloud particles, we can’t interpret the standard radar echo," explains NCAR’s Jothiram Vivekanandan, the lead scientist on the project. "This research is very challenging."

The two radars have been mounted on a single pedestal at the Marshall facility. They are precisely aligned to look at the same defined area at the same time. Researchers will compare the radar images with data collected from a University of North Dakota Citation research airplane flying in the test area to determine whether the radar system is pinpointing water droplets.

After data are collected this month, the researchers will focus on identifying and measuring droplets within the radar images accurately. If all goes well, the instrument will undergo final tests in a couple of years before being made available to airports.

Notable Icing Crashes:
  • In-flight icing downed the small plane carrying 1950s rock and roll legends Buddy Holly, Ritchie Valens and The Big Bopper (J.P. Richardson). All three musicians and the pilot died when their plane crashed soon after take-off from Mason City, Iowa, on Feb. 3, 1959.

  • An American Eagle ATR-72 went into a high-speed dive and crashed near Roselawn, Ind., on Oct. 31,1994. As the plane circled for a half hour waiting to land in Chicago, ice forming on the wings caused the crew to lose control. None of the 68 people aboard survived.

  • An Embraer 120RT en route from Cincinnati crashed on approach to the Detroit airport on Jan. 9, 1997, killing all 29 people on board. At the time, other aircraft in the area were reporting icing minor to very heavy.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>