Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating the unknown - nautical 3D maps and tourist guides

19.02.2004


At sea, when you approach land? Tellmaris’ prototype system provides up-to-date 3D information to orient sailors as and when they dock.



Two years after initial market research and interviews with over 800 pleasure boat users, the IST-funded TellMaris team (consisting of firms and research institutes from Norway, Finland, Germany and Greece) has developed three prototypes for areas of the Baltic Sea in Northern Europe. Sailors and leisure boat tourists were chosen as the test sample for 3D maps since maps are important components of sailing.

Offshore assistance


The TellMarisOnBoard prototype runs on a laptop, and supports sailors and boat tourists with information while travelling at sea. The system provides 3D navigation and vital information about the entrance of harbours, with regular weather forecasts to supplement the spatial information. In addition the system provides searchable tourist information which is kept up-to-date over the Internet.

The user can search for relevant information - harbour facilities, cultural events and hotels - and these features are displayed in the 3D map as symbols or as 3D rendering of the real object, if available in the database. Clicking on the object will provide further information on the facility. Coupled to GPS it gives the sailor a 3D landscape view of the surrounding landscape with 3D buildings, trees, topography, seamarks (buoys and lighthouses). The system is different from other applications for laptops in that the data is not loaded from CD or diskette, but dynamically downloaded using mobile technology, keeping the information constantly up-to-date.

Onshore guidance

While TellMarisOnBoard provides information for tourists at sea, the TellMarGuide prototypes - one running on a Nokia communicator and the other on an HP IPAQ Pocket PC - are land-based. They support navigation around a city with route and location-based services and information on city attractions, restaurants and other tourist highlights.

One of the most innovative elements of the TellMaris project has been to develop a hierarchical data structure that can store both the usual 2D terrain surface, but also tourist information content and a 3D object database that stores features enabling the accurate representation of buildings from multiple viewpoints. Furthermore, the project emphasises dynamic downloading of updated and relevant tourist information from the Internet (market research showed that information used by tourists should be comprehensive, regularly updated and quality approved).

With tourists using a range of technologically diverse mobile devices, TellMaris’ ability to use compact data structures, to store 3D geodata and simple GIS functionality (whilst using minimal storage, memory and CPU resources) will be critical to user-adoption.

User testing

Commenting on the usability tests undertaken as part of the project, Katri Laakso from the Nokia Research Centre said: "Users’ attitudes towards the prototypes were generally positive. 75 per cent said they would like to use this kind of service rather than 2D paper maps and guidebooks. The 3D map itself was found to be a good idea, although many experienced map users thought that an electronic 2D map would be sufficient for them. Most of the users tried to use the 3D model as a navigational tool, and all of them used it to recognise buildings, mostly successfully. Some claimed that non-textured buildings were hard to distinguish. Textured buildings (those with realistic rendering) were considered more easy to recognize."

Apart from matching buildings in the real world to an on-screen representation, the most common navigation strategy for users was to follow the direction arrow in the 3D view coupled with 2D information about target location. The users also had the possibility to choose the 3D viewing height to switch between the pedestrian view at 1.8m and the bird’s-eye-view at 25m. Feedback suggested the bird’s-eye-view was easier for navigational purposes.

The future

The consortium is initially looking to commercialise the technology with partners with whom it can further develop or licence the TellMarisOnBoard technology for 3D sea charts for boat tourists. However application of the technology is potentially much broader. As network speeds increase, enabling us to make use of location based services (especially on land) the consortium is positioning the TellMaris technology as a system with the capability to offer dynamic, up-to-date tourist information at any time, in any place via mobile phone.

The TellMaris team can envisage a future all mobile phone users, not just tourists, can benefit from interactive 3D maps fuelled by TellMaris technology to support location based services.


Contact:

Jan Rasmus Sulebak
SINTEF
Department of Applied Mathematics
Forskningsveien 1
NO-0314 Oslo
Norway
Tel: +47-22-06-74-10
Email: jan.r.sulebak@sintef.no
Source: Based on information from TellMaris

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=61698

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>