Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FarSounder, URI researcher develop first sonar for marine navigation, obstacle avoidance

07.01.2004


Device can save industry $2 to $3 billion in annual damages from collisions



FarSounder, Inc. and a University of Rhode Island researcher have begun commercial production of the FS-3, the first 3-dimensional, forward-looking sonar designed as an aid to marine navigation.

With a range of 1,000 feet, a 90 degree field of view, and a refresh rate of just two seconds, the device will allow marine vessels to avoid collisions with submerged obstacles and potentially save the marine industry $2 to $3 billion per year in direct and indirect damage costs.


"We’ve been told that we’ve broken the laws of physics with this technology, but we haven’t. We’ve just opened the world up below the water line," said James Miller, a professor of ocean engineering at URI, where he began development of the technology along with former student Matthew Zimmerman, who is now FarSounder’s vice president of engineering. "This is a revolutionary leap for marine navigation, especially since most navigational charts in use today are more than 50 years old and many waterways are constantly changing."

The FS-3 is designed primarily for mid-size workboats (70-200 feet) like barges, tugs, offshore oil supply boats, research vessels, and ferries, but it is also of interest to large recreational vessels, the Navy and its contractors, and many others.

It provides high-resolution images of common hazards such as submerged shipping containers, whales, coral reefs, buoys, rocks and coastal ledge, and it is especially useful in navigating shallow waters or for nighttime navigation in unfamiliar harbors.

"There are 22,000 floating shipping containers in the oceans on any given day, and they are of great concern to ships’ captains around the world," said Cheryl Zimmerman, chief executive officer of FarSounder, which was listed by Rhode Island Monthly as one of the top ten small Rhode Island companies to watch in 2004. "Owners of petro-chemical barges, in particular, are concerned about any type of collision due to the environmental costs that might result from damage to their vessels."

Added Miller, "Just think of the cost of the Exxon Valdez disaster. If that captain could have had a map of the seafloor ahead of him, that disaster could have been avoided."

The FS-3 passed its final sea tests late in 2003 and was formally launched at the International Workboat Show in New Orleans in December, where it met with great endorsements from boat owners. Priced at between $55,000 and $65,000, the device is coupled with an electronic navigational chart system so users can not only see obstacles and the seafloor ahead of them but also easily see their geographic position.

"Our sonar delivers the three critical readings required for obstacle avoidance: range, bearing and depth. Two-dimensional sonars can only provide two of those three," Miller explained. "And the FS-3 generates a complete 3-D image on one ping every two or three seconds, unlike other systems that require several minutes and many pings to complete an image."

The sonar transmitter and listening devices are encased in a bow-mounted transducer that operates at frequencies well above the hearing range of whales, so marine mammals will not be impacted by its operation. Through "adaptive sonification," the system will soon automatically raise and lower sound levels depending on sea-states and the distance to objects.

The transducer is connected by a custom cable to a power module about the size of a briefcase. The user interface runs Sonasoft, a Windows XP-based graphical program that can be run on a laptop or marine computer. The user-friendly, 3-D volumetric navigational display provides vessel location on electronic charts, depth profile, color mapped depth scale, user-selectable depth and detection thresholds. It can also display GPS, vessel speed and heading data. The system can easily be set up so alarms will sound if obstacles or particular depths are encountered.

The technology used by the FS-3 has a wide range of potential uses and can be customized for individual needs. It can be adapted for Homeland Security uses like shoreland defense, in-water mine detection, terrorist swimmer detection, and defense of bridges and ports. It also could be used as an underwater security camera for dock-owners and waterfront property owners, among other uses.

FarSounder, Inc. is a Providence-based company established by Miller and Matthew Zimmerman in 2001 to bring to market the marine navigation technology they began developing at the University of Rhode Island with the assistance of the Naval Undersea Warfare Center. The company has built five generations of prototypes. The FS-3 is its first commercialized product.

FarSounder expects to grow from its current six employees to 20 by the end of 2005. For more information visit http://www.farsounder.com or call Cheryl Zimmerman at 401-784-6700.


For Further Information:
Cheryl Zimmerman 401-784-6700, or Todd McLeish 401-874-7892.

Todd McLeish | EurekAlert!
Further information:
http://www.farsounder.com

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>