Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Plan to Connect Petrol Stations to Natural Gas Supply to Fuel Hydrogen Powered Cars

14.02.2003


Researchers at the University of Warwick’s Warwick Process Technology Group are leading a programme called “Hydrofueler” to develop technology to connect petrol stations to the normal natural gas supply to fuel hydrogen powered vehicles. The 2.8 million euro EC funded three year research programme has already drawn interest from Exxon Mobil, and BMW.



One of the problems with using hydrogen powered cars is how do you keep their fuel cells supplied with a ready source of hydrogen? The Warwick researchers believe that much of the necessary infrastructure already exists – the new technology can be fitted to pre-existing filling stations who will then use it to produce hydrogen from the normal pre-existing natural gas pipeline supply system.

To do this however you need to resolve a number of problems. In particular how to produce the hydrogen from that natural gas in a confined space, using a simple automated remotely controlled process. Obviously very large scale industrial processes already exist to produce hydrogen from natural gas but these technologies cannot be scaled down to compact size needed to be practical in a filling station context and the costs of using these processes would be prohibitive.


The new University of Warwick research solves these problems by a combination of innovative heat exchange technology, novel ways of managing and using heat and pressure within a reactor, novel compact plated reactor technology, and the use of new coated nanocrystaline catalysts to greatly increase the efficiency of the reactions. These techniques will allow the researchers to develop a reactor around the size of three average office desks which can be used in the confined space available on pre-existing petrol station forecourts and which will produce hydrogen at a cost effective rate and without any emissions problems.

The research will draw on technology developed by University of Warwick Process Technology Group researcher Dr Ashok Bhattacharya, and the following research partners: Chart Heat Exchangers Ltd in Wolverhampton, England; France’s Commissariat a l’Energie Atomique; Norway’s Foundation for Technical and Industrial Research in Strindveien (SINTEF); The National Research Council of Italy; and catalyst specialists Dytech in Sheffield, England.

Another advantage of the technology proposed by the Warwick team is that process employs a number of stages at which hydrogen reaches different rates of purity. This is ideal, as different sorts of fuel cell will require different mixes of hydrogen. Thus the technology proposed can in one reactor simultaneously produce what one might describe as 2, 3 and 4 star hydrogen!

The researchers are also considering using the technology to carry out hydrogen production within car engines and also as a possible replacement for large industrial hydrogen production processes.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=887

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>