Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA is helping to make road transport more effective

02.10.2002


Space is the usual business of a space agency, so it may come as a surprise that the European Space Agency (ESA) is giving some attention to road transport.



The agency is designing and building the satellites that will make up the space segment of Galileo, Europe`s own global satellite navigation system. When Galileo becomes fully operational in 2008, road vehicles fitted with special receivers will be able to use signals broadcast by the satellites to determine their positions with unprecedented accuracy. Such information will open up new ways of managing traffic, leading to better road safety, fewer traffic jams and more efficient journeys. Already, ESA is assessing some of the possibilities.
Many cars already have GPS (Global Positioning System) that can tell you how to get to your destination. But what we will be able to have with Galileo is spot-on road traffic management. This is because the future satellite navigation services will be more reliable and much more accurate than the present GPS system.

Metre accuracy can already be achieved with satellite based augmentation systems, such as EGNOS (the European Global Navigation Overlay System), which improves the accuracy and reliability of GPS signals. “Galileo`s novel signal structure in combination with regional augmentations will notch the accuracy up again by an order of magnitude into the centimetre range. We have already tested the technology and are pretty sure that Galileo will achieve this. Galileo will also bring an enormous leap in the availability and reliability of positioning signals. We will be able to do things that have been impossible so far. What seems like science fiction today will be science fact in a few years` time," says Hans Fromm from ESA`s navigation department.



ESA has recently launched a new intelligent car initiative to test out some of these futuristic scenarios. Industry is being invited to send in proposals. The chief aims are to devise and demonstrate ways of using Galileo signals to improve road safety and manage traffic more efficiently. Initially, however, the new ideas will be tested using the EGNOS signal, which is already being broadcast.

Galileo could revolutionise the experience of future car-driving. The car of tomorrow, for example, might be equipped with an inter-car communication system that sends out a signal over a distance of about 100m containing information on the car`s position, direction of travel, speed and any other relevant information. Neighbouring vehicles, similarly equipped, will pick up the signal and automatically take action to continue driving safely. Such "smart" cars would avoid crashes, break softly in front of traffic jams, or wake up a driver who is falling asleep. Ultimately, Galileo`s guaranteed signal will be reliable enough for automated driver assistance. Already several car manufacturers are developing systems that integrate different aspects of a car`s control system with satellite navigation to provide an auto-pilot for cars.

Other possibilities include warning drivers of traffic jams and suggesting alternative routes; providing drivers with accurate and up-to-the-minute information on motorway lane closures and speed restrictions; and guiding drivers to the nearest parking space, hotel, restaurant or other facility. The list is almost endless.

Hans Hermann-Fromm | alfa
Further information:
http://www.esa.int

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>