Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA is helping to make road transport more effective

02.10.2002


Space is the usual business of a space agency, so it may come as a surprise that the European Space Agency (ESA) is giving some attention to road transport.



The agency is designing and building the satellites that will make up the space segment of Galileo, Europe`s own global satellite navigation system. When Galileo becomes fully operational in 2008, road vehicles fitted with special receivers will be able to use signals broadcast by the satellites to determine their positions with unprecedented accuracy. Such information will open up new ways of managing traffic, leading to better road safety, fewer traffic jams and more efficient journeys. Already, ESA is assessing some of the possibilities.
Many cars already have GPS (Global Positioning System) that can tell you how to get to your destination. But what we will be able to have with Galileo is spot-on road traffic management. This is because the future satellite navigation services will be more reliable and much more accurate than the present GPS system.

Metre accuracy can already be achieved with satellite based augmentation systems, such as EGNOS (the European Global Navigation Overlay System), which improves the accuracy and reliability of GPS signals. “Galileo`s novel signal structure in combination with regional augmentations will notch the accuracy up again by an order of magnitude into the centimetre range. We have already tested the technology and are pretty sure that Galileo will achieve this. Galileo will also bring an enormous leap in the availability and reliability of positioning signals. We will be able to do things that have been impossible so far. What seems like science fiction today will be science fact in a few years` time," says Hans Fromm from ESA`s navigation department.



ESA has recently launched a new intelligent car initiative to test out some of these futuristic scenarios. Industry is being invited to send in proposals. The chief aims are to devise and demonstrate ways of using Galileo signals to improve road safety and manage traffic more efficiently. Initially, however, the new ideas will be tested using the EGNOS signal, which is already being broadcast.

Galileo could revolutionise the experience of future car-driving. The car of tomorrow, for example, might be equipped with an inter-car communication system that sends out a signal over a distance of about 100m containing information on the car`s position, direction of travel, speed and any other relevant information. Neighbouring vehicles, similarly equipped, will pick up the signal and automatically take action to continue driving safely. Such "smart" cars would avoid crashes, break softly in front of traffic jams, or wake up a driver who is falling asleep. Ultimately, Galileo`s guaranteed signal will be reliable enough for automated driver assistance. Already several car manufacturers are developing systems that integrate different aspects of a car`s control system with satellite navigation to provide an auto-pilot for cars.

Other possibilities include warning drivers of traffic jams and suggesting alternative routes; providing drivers with accurate and up-to-the-minute information on motorway lane closures and speed restrictions; and guiding drivers to the nearest parking space, hotel, restaurant or other facility. The list is almost endless.

Hans Hermann-Fromm | alfa
Further information:
http://www.esa.int

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>