Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researcher develops design-rules for transport networks

25.09.2002


Large changes unnecessary for multimodal transport



Multimodal transport is not in need of redesigned networks, rather of well designed ones. This is one of the conclusions from the PhD research of Rob van Nes, who will defend his thesis on Wednesday 25 September at TU Delft. “A highway with too many on and off ramps actually becomes a main road. This might be handy, but it is not effective.” Van Nes, who carried out his research at TRAIL research school, laid the theoretical foundation for something which many people already suspected.

Multimodal transport is often seen as an interesting possibility to solve the current traffic problems such as traffic jams, unreachable areas and negative environmental effects. Combining the use of, for example, cars, trains and buses on certain routes, could emphasise the strengths and diminish the weaknesses of the network. Van Nes: “Multimodal transport is very useful, but the important question is actually: what exactly does an effective multimodal network look like? Is a different from the networks that we have at the moment, or are the connections between the networks more important?” According to Van Nes, two points are of great importance for an effective multimodal network: hierarchy and concentration in space.


Using mathematical models, Van Nes showed that multimodal networks are pointless unless one sticks to the hierarchy of the network. Van Nes: “In the hierarchy, a highway stands above a main road. The highway is for longer distances at higher speeds, a main road is for shorter distances and lower speeds.” If one does not maintain a clear separation, the result is an inefficient network. Van Nes: “A highway with many on and off ramps becomes a main road. It gets used for shorter distances, it becomes busier and the speed decreases.”

The concentration in space is also very important. Van Nes uses calculations to show that a public transport network can only work if there is a demand for transport. “If in a certain part of the city, there is no clear demand for transport, it is of little use to build higher level networks (fast tram/subway) alongside a the bus network in that area,” says Van Nes, “It is better to choose one of the two. This saves space, and especially money.” Van Nes has laid theoretical foundation for something that many people already suspected. Van Nes: “We can now provide proper arguments as to why we must build networks systematically, and on what points we should concentrate when trying to stimulate multimodal transport.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Transportation and Logistics:

nachricht German-British Research project for even more climate protection in the rail industry
28.05.2020 | Technische Universität Dresden

nachricht Delivery drones instead of postal vans?
22.04.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>