Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow speed - less dust

13.03.2008
If an automobile with studded tyres drops its speed from 50 to 30 km/hour, the amount of dust it kicks up is cut in half, a researcher at the Norwegian University of Science and Technology (NTNU) has shown.

There’s a fierce debate in Trondheim, NTNU’s home, as to whether the speed limit in the centre of the city should be dropped from 50 to 30 kilometres per hour. The arguments for lowering the speed limit are many – better air quality is just one of them. But until now, there hasn’t been any concrete information about the effect that lower speeds have on the amount of fine dust on the roads.

NTNU researcher Brynhild Snilsberg has examined the occurrence of fine dust in the summer and winter from winter tyres, summer tyres and studded tyres – and has measured the amount of dust associated with different speeds.

Her results show that the amount of road dust from studded tyres is halved when speeds drop from 50 to 30 km/hour. The dust particles are also less finely ground.

Fast studs, fine dust

“In general, it turns out that the amount of dust that is produced and kicked up increases proportionally with the speed, so that the amount increases from about 2.5 milligrams per cubic metre of air at speeds of 30 km/hr, to a little over 5, at 50 km/hr”, says Snilsberg.

“Also, the particles are on the whole much smaller with higher speeds. The increased speed enables the studs to grind the dust more finely”, explains Snislberg.

“That’s a strong argument for reducing the speed limit in the city, particularly in the winter months”, says the researcher.

Stronger than expected

Snilsberg says she wasn’t surprised to find the trend. “But I didn’t think it would be so strong”, she says.

Roughly three of 10 automobiles in Trondheim are outfitted with studded tyres. Consequently, a halving of the amount of fine dust caused by studded tyres will have a considerable effect on the total amount of dust in the city centre. The national average for the use of studded tyres is 45 per cent.

The problem with road dust from studded tyres is increasing, as both the amount of traffic and the demand for ice- and snow-free roads increase. That means that roads in residential areas outside of the city centre and the more built-up areas will also be affected by this nuisance.

A need for better measurements

The dust in question is called PM 10, particulate matter that is 10 micrometres or less in diameter. The current measurement requirements, which are EU certified, are based exclusively on weight. That isn’t a very adequate standard, Snilsberg believes.

“If you have one particle that’s one milligram on the one hand, and a thousand fine particles that together weigh the same on the other, there’s no doubt as to which is more harmful to your health. But we don’t have any better alternative when it comes to measuring and monitoring air quality in Norwegian cities”, she says.

Snilsberg took her PhD at the Department of Geology and Mineral Resources Engineering at NTNU, and conducted her research at the Norwegian Public Roads Administration.

By Tore Oksholen/Gemini

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Transportation and Logistics:

nachricht 3D mobility: a reality check for flying taxis
08.01.2020 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>