Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic jam mystery solved by mathematicians

20.12.2007
Mathematicians from the University of Exeter have solved the mystery of traffic jams by developing a model to show how major delays occur on our roads, with no apparent cause.

Many traffic jams leave drivers baffled as they finally reach the end of a tail-back to find no visible cause for their delay. Now, a team of mathematicians from the Universities of Exeter, Bristol and Budapest, have found the answer and published their findings in leading academic journal Proceedings of the Royal Society.

The team developed a mathematical model to show the impact of unexpected events such as a lorry pulling out of its lane on a dual carriageway. Their model revealed that slowing down below a critical speed when reacting to such an event, a driver would force the car behind to slow down further and the next car back to reduce its speed further still. The result of this is that several miles back, cars would finally grind to a halt, with drivers oblivious to the reason for their delay. The model predicts that this is a very typical scenario on a busy highway (above 15 vehicles per km). The jam moves backwards through the traffic creating a so-called ‘backward travelling wave’, which drivers may encounter many miles upstream, several minutes after it was triggered.

Dr Gábor Orosz of the University of Exeter said: “As many of us prepare to travel long distances to see family and friends over Christmas, we’re likely to experience the frustration of getting stuck in a traffic jam that seems to have no cause. Our model shows that overreaction of a single driver can have enormous impact on the rest of the traffic, leading to massive delays.”

Drivers and policy-makers have not previously known why jams like this occur, though many have put it down to the sheer volume of traffic. While this clearly plays a part in this new theory, the main issue is around the smoothness of traffic flow. According to the model, heavy traffic will not automatically lead to congestion but can be smooth-flowing. This model takes into account the time-delay in drivers’ reactions, which lead to drivers braking more heavily than would have been necessary had they identified and reacted to a problem ahead a second earlier.

Dr Orosz continued: “When you tap your brake, the traffic may come to a full stand-still several miles behind you. It really matters how hard you brake - a slight braking from a driver who has identified a problem early will allow the traffic flow to remain smooth. Heavier braking, usually caused by a driver reacting late to a problem, can affect traffic flow for many miles.”

The research team now plans to develop a model for cars equipped with new electronic devices, which could cut down on over-braking as a result of slow reactions.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>