Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rail, road or waterway?

09.09.2008
Is road transport the best way to send oranges from Spain to northern Germany? Or would it be better to ship them by rail or waterway for part of the route? A new software package determines the cheapest, fastest or most environmentally compatible mode of transportation.

Prime Argentine steak accompanied by a good French wine, with strawberries from Spain as dessert. And mood music playing on a stereo system made in Japan. Most national and international freight is transported by road, because it is the least expensive option.

But this is likely to change soon, due to road tolls and the rising cost of fuel. Even when it’s a question of making sure that the merchandise is delivered precisely on time, trucks are not always the most reliable solution. It can often take a long time to clear goods through the container terminals, and tailbacks on the motorways can cause additional delays.

So what is the optimum strategy for transporting goods over a particular route? Where could costs be saved by using inland waterways, and at what point would it be best to transship to a road or rail vehicle? What is the cheapest, fastest, or most environmentally compatible overall solution? Answers can be provided by a new software package developed by researchers at the Fraunhofer Institute for Material Flow and Logistics IML in Dortmund. “The user enters the locations between which the goods are to be transported, as you would when using a route planner,” says IML team leader Joachim Kochsiek. “The system calculates different variants to find the optimum solution that fits the specified criterion: costs, time or, in a future version, least environmental burden. It even factors in the time and costs for transshipment.”

Digital maps of road, rail and inland waterway networks can be purchased off the shelf, but the information they provide is not sufficiently detailed for the new software. “There are different categories of train, and different pricing systems for different rail connections – we can’t apply a standard price per kilometer. We need to know what rules apply to the speed, width and height of trains, how many wagons are permitted on a particular section of railroad, and the maximum speed limit. Whereas this kind of information is included in road maps, it has to be compiled manually for the rail networks,” Kochsiek explains.

For each mode of transportation, the system adapts its calculation of costs and fuel consumption to the degree of capacity utilization. For example, the lower the number of wagons pulled by a locomotive, the higher the costs. A prototype version of the software for optimizing time and costs is already available. The researchers are now working on the algorithms for calculating the environmental burden. A later version with online access will enable modified shipping timetables, for instance, to be instantly included in the calculations.

Joachim Kochsiek | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de/
http://www.fraunhofer.de/EN/press/pi/2008/09/ResearchNews092008Topic6.jsp

Further reports about: IML Railway Truck container terminals international freight railroad transshipment waterway

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>