Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Midwesterners, more boxcars mean cleaner air

09.12.2011
Shifting a fraction of truck-borne freight onto trains would have an outsized impact on air quality in the Midwest, according to researchers at the University of Wisconsin–Madison.

Much of that impact boils down to simple efficiency, according to Erica Bickford, a graduate student in UW–Madison's Nelson Institute for Environmental Studies. For each ton they carry, long-distance trucks go about 150 miles on a gallon of diesel fuel. Trains can move a ton more than 400 miles per gallon.

Shifting from road to rail 500 million tons of the freight passing through or to the Midwest would make a large dent in the carbon dioxide spilled into the air by the movement of goods.

"There's a 31 percent decrease in carbon dioxide produced by freight shipping in the region, and that's straight from emissions," says Bickford, who made a model of freight traffic in 10 Midwestern states from Kansas to Ohio that she will present today in San Francisco at the fall meeting of the American Geophysical Union. "It's 21 million metric tons of CO2, the equivalent of what's produced by about 4 million cars."

But carbon dioxide mixes fairly evenly in the atmosphere, spreading its effects around the globe. Bickford's study accounts for weather patterns and the way particular pollutants are distributed to determine how long other products of diesel engines — like black carbon soot and the ozone ingredient and lung irritant nitrogen dioxide (NO2) — linger near their sources.

"The result is a much more thorough and local idea of the differences between truck and rail shipping," says Tracey Holloway, director of the Nelson Institute's Center for Sustainability and the Global Environment and Bickford's advisor. "If you're emitting CO2 in Indiana or India it has the same impact. But something like soot, that has local impact."

More rail traffic would mean more pollutants near the tracks, but relief near roads frequented by trucks — a tradeoff is unbalanced in favor of more densely populated areas.

"Black carbon and NO2 are harmful to everyone's health," Bickford says. "But because more people live near roads than railroad tracks, more people would benefit from the shifts in these pollutants."

As much as 16 percent less black carbon soot would linger near roads with heavy shipping traffic, according to Bickford's model, while the increase around rail corridors would be as high as 20 percent. Nitrogen dioxide would plummet by as much as 30 percent near roads, but rise by as much as 20 percent near railroad tracks.

Holloway's research group is already working on further modeling to explore connected changes in the number of asthma and heart disease cases.

The effects of greater rail use would be particularly noticeable in the middle of the country, according to Bickford.

"We're sort of a freight crossroads in the Midwest," says Bickford, whose work was funded by the National Center for Freight & Infrastructure Research & Education at UW–Madison. "International shipping comes into the country on the coasts and then passes through our backyard on the way to its destination."

The study limited hypothetical changes in shipping to trips of more than 400 miles to ensure a cost savings for shippers, and to cargo — such as automobiles and non-perishable food — that could handle the slower trip in railcars. The 500 million tons Bickford selected for travel by rail represent about 5 percent of U.S. truck freight by weight.

"These aren't pie-in-the-sky figures," Holloway says. "They are reasonable and achievable."

And they come with non-pollution benefits, like reduced traffic congestion, wear on roads and demand for diesel fuel.

"Truck freight travels on publically-funded roads, rail traffic on privately-built tracks," Bickford says. "But these benefits could be an impetus for public investment in rail infrastructure."

— Chris Barncard, 608-890-0465, barncard@wisc.edu —

CONTACT: Erica Bickford, ebickford@wisc.edu; Tracey Holloway, 608-262-5356, taholloway@wisc.edu

Erica Bickford | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>