Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Should Be Legally Responsible for Autonomous Cars?

17.02.2014
Self-driving cars that perform complex maneuvers, such as parking or keeping the lane, without the intervention of a human operator:

The development of such vehicles is the project of a new European research consortium. The legal implications of the new technology are explored by the research center "RobotRecht", which is led by legal scholar Eric Hilgendorf.

This is more than just a future scenario; at least since September 2012, it has become clear: Autonomous vehicles – in other words: cars without an active driver – might actually be encountered in road traffic, at least in the U.S. State of California. On that date, Governor Jerry Brown signed a bill allowing the operation of autonomous vehicles on public roads for testing purposes.

However, this only provided the legal framework for a project that had long become a reality. Internet giant Google had already been testing autonomous vehicles on public roads for several years, taking advantage of a gap in California regulation.

When hackers hijack a car

The following scenario has also become a real possibility: Hackers gain access to the on-board system of a passing car by radio transmission, taking control of the vehicle. In their experiments, scientists were able to infect a vehicle's on-board system with some self-developed software, allowing them, among other things, to activate the car's brakes at will or – even worse – to simply disable them. They were also able to stop the car engine, to switch the lights on and off, to activate the windshield wipers and to control the car in many other ways.

The new research consortium

The new European research project AdaptIVe is set in this context. The abbreviation stands for Automated Driving Applications and Technologies for Intelligent Vehicles. 29 research institutes, automotive suppliers and manufacturers joined forces for the project, including the Universities of Würzburg, Leeds and Trento as well as a number of major companies, such as Volkswagen, Bosch, Daimler, Ford, Opel, Renault and Volvo.

According to the project description, one of the objectives is "to develop new integrated automated functions that contribute towards enhanced traffic safety". New technologies are envisioned to minimize human errors and to optimize the traffic flow.

The Würzburg participants

On the part of Würzburg, legal scholar Professor Eric Hilgendorf participates in the project. At his research center, called "RobotRecht", he spearheads the Europe-wide research on the legal implications of these systems. Overall, the project is funded by the European Union with about 16 million euros; 230,000 euros of this money will be allocated to "RobotRecht".

"Automatic parking assistance systems, lane-keeping systems or cruise control systems in stop-and-go traffic are no longer futuristic visions, but real high-tech components, which are increasingly often included in the standard equipment of vehicles in the premium segment," explains Eric Hilgendorf. From a legal perspective, these partially autonomous vehicles are very problematic.

"For instance, who should be held liable when an automatic parking assistance system causes an accident?" the legal scholar asks. Moreover, who has the right to use the data in the event data recorder? Are manufacturers allowed to sell their customer's data to data dealers? What are the legal aspects of a case in which hackers cause a vehicle crash by means of some malicious software?

Autonomous vehicles are not allowed

Current law provides a plain answer: "Under current law, which is based on the Vienna Convention on Road Traffic, agreed in 1968, vehicles exceeding a certain level of automation are not admissible for road traffic in the first place," says Hilgendorf. This is because the regulations effective today stipulate that all vehicles must be controlled by a human driver at all times. Since the legal framework needs to catch up with the technological development, there is a particular need for legal scholars in this area. Over the next few years, Hilgendorf intends to focus his research on data protection, product liability and road traffic law.

A new legal framework is required

Current law provides that the driver has sole responsibility for safe driving; hence the legal minimum requirement that he should be able to control his vehicle at all times. While this requirement is more or less compatible with the driver assistance systems in use today, things are different when it comes to autonomous vehicles. "In this case, the criterion of the driver's control is no longer suitable as a basis for legal provisions," says Hilgendorf. The fundamental technological change makes an adaptation of the legal framework indispensable – at a European level. Just a few weeks of work won't do the trick. Hilgendorf is sure about this: We have a mountain of legal work to do before the first robotic cars can drive on European roads.

Contact person

Prof. Dr. Dr. Eric Hilgendorf, Department of Criminal Law, Criminal Justice, Information and Computer Science Law, T: +49 (0)931 31-82304, hilgendorf@jura.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>