Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New airport system facilitates smoother take-offs and landings

20.09.2012
For airline passengers who dread bumpy rides to mountainous destinations, help may be on the way. A new turbulence avoidance system has for the first time been approved for use at a U.S. airport and can be adapted for additional airports in rugged settings across the United States and overseas.

The system, developed by the National Center for Atmospheric Research (NCAR), provides information pilots can use to route aircraft away from patches of potentially dangerous turbulence. It uses a network of wind measuring instruments and computational formulas to interpret rapidly changing atmospheric conditions.


As pilots fly in and out of Juneau International Airport, they see a display alerting them to areas of moderate and severe turbulence.

Credit: Image courtesy National Center for Atmospheric Research.

The Federal Aviation Administration formally commissioned the system in July for Alaska's Juneau International Airport. NCAR researchers can now turn their attention to adapting the system to other airports that often have notoriously severe turbulence, in areas ranging from southern California and the Mountain West to Norway and New Zealand.

The Juneau system was patterned after a similar system, also designed by NCAR, that has guided aircraft for several years at Hong Kong's heavily trafficked Chek Lap Kok Airport.

"By alerting pilots to areas of moderate and severe turbulence, this system enables them to fly more frequently and safely in and out of the Juneau airport in poor weather," says Alan Yates, an NCAR program manager who helped oversee the system's development. "It allows pilots to plan better routes, helping to reduce the bumpy rides that passengers have come to associate with airports in these mountainous settings."

The system offers the potential to substantially reduce flight delays. In Alaska's capital city, where it is known as the Juneau Airport Wind System or JAWS, it enables the airport to continue operations even during times of turbulence by highlighting corridors of smooth air for safe take-offs and landings.

"The JAWS system has nearly eliminated all the risk of flying in and out of Juneau," says Ken Williams, a Boeing 737 captain and instructor pilot with Alaska Airlines. "I wish the system would be deployed in other airports where there are frequent encounters with significant turbulence, so pilots can get a true understanding of what the actual winds are doing on the surrounding mountainous terrain as you approach or depart."

The project was funded by the Federal Aviation Administration. NCAR is sponsored by the National Science Foundation.

Steep terrain, rough rides

Turbulence has long been a serious concern for pilots approaching and departing airports in steep terrain. Rugged peaks can break up air masses and cause complex and rapidly changing patterns of updrafts and downdrafts, buffeting an aircraft or even causing it to unexpectedly leave its planned flight path.

In Juneau, after several turbulence-related incidents in the early 1990s—including one in which a jet was flipped on its side during flight and narrowly avoided an accident—the FAA imposed strict rules of operation that effectively shut down the airport during times of atmospheric disturbance. The agency then asked NCAR to develop a system that would allow pilots to avoid regions of turbulence. Otherwise, Alaska's capital would be isolated at many times from the rest of the state, since the only way to travel in and out of Juneau is by airplane or boat.

The NCAR team used research aircraft and computer simulations to determine how different wind patterns—such as winds that come from the north over mountains and glaciers and winds that come from the southeast over water—correlated with specific areas of turbulence near the airport. To do this they installed anemometers and wind profilers at key sites along the coast and on mountain ridges. The team has installed ruggedized, heated instruments that can keep functioning even when exposed to extreme cold, wind, and heavy icing conditions.

The Federal Aviation Administration accepted JAWS for operational use this year.

The five anemometer sites and three wind profiler sites around the airport transmit data multiple times every minute. Pilots can get near-real-time information about wind speed and direction, and a visual readout showing regions of moderate and severe turbulence in the airport's approach and departure corridors, from the FAA's Flight Service Station or online at a National Weather Service website.

"Juneau was an extremely challenging case, and we're pleased that the new system met the FAA's high standards," Yates says. "We look forward to exploring opportunities to support development of turbulence avoidance systems at additional airports. Our goal is to improve flying safety and comfort for millions of passengers."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

On the Web:
Additional news releases, images, and more: www.ucar.edu/atmosnews

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Transportation and Logistics:

nachricht New players, standardization and digitalization for more rail freight transport
16.07.2018 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>