Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zoos exonerated in baby elephant deaths; Data support new branch of herpesvirus family

09.10.2014

Elephants are among the most intelligent non-humans, arguably on par with chimps, but both African and Asian elephants—separate species—are endangered.

In 1995, 16-month old Kumari, the first Asian elephant born at the National Zoo in Washington, DC, died of a then-mysterious illness. In 1999, Gary Hayward of Johns Hopkins University and collaborators published their results identifying a novel herpesvirus, EEHV1 as the cause of Kumari's sudden death.


Kumari, an Asian elephant at the National Zoo, died suddenly at 16 months of EEHV.

Credit: Jessie Cohen, Smithsonian's National Zoo

They now show that severe cases like this one are caused by viruses that normally infect the species, rather than by viruses that have jumped from African elephants, which was their original hypothesis. Hayward's latest research appears ahead of print in two concurrently published papers in the Journal of Virology.

At the time of Kumari's death, anti-zoo activists seized on the situation to call for abandoning all efforts to breed Asian elephants in zoos, as they claimed that zoos were spreading the deadly herpesvirus, says Hayward. Contrary to that, in the current research, "We showed that whereas some identical herpesvirus strains infected both healthy and diseased animals concurrently at particular facilities, the majority were different strains, and there has not been a single proven case of the same strain occurring at any two different facilities," says Hayward.

"Therefore, the viruses have not spread between zoos, and the sources of the viruses were most likely wild-born elephant herdmates. In fact, we also found the same disease in several Asian range countries, including in orphans and wild calves, and showed that the EEHV1 strains in India displayed the same genetic diversity as those in Western zoos."

The papers also provide substantial data to support the hypothesis that the EEHV collectively represent a new, fourth major branch of the herpesvirus family, the proposed deltaherpesvirus subfamily (Deltaherpesvirinae), says Philip Pellett of Wayne State University, Detroit, who wrote an invited Commentary which accompanied Hayward's papers. "Given that the three other branches were recognized over 30 years ago, establishment of a new subfamily would a big deal."

Pellett adds that "Further scientific significance arises from the discovery of 12 new herpesviruses and identification of some new wrinkles in our understanding of herpesvirus diversity and evolution."

In these studies, the investigators performed extensive DNA fingerprinting of the genetic signatures of all the known EEHV cases, as well as samples of EEHV virus that were obtained from wild Asian and African elephants, says Hayward. In the process, they identified seven different species of EEHVs and multiple different chimeric subtypes and strains of each.

"Because these viruses cannot be grown in cell culture, we had to develop sensitive and specific PCR techniques to be able to identify and compare the sequences of multiple segments of many different types of EEHV genomes directly from pathological blood and tissue DNA samples," says Hayward.

"Later, by also examining benign lung nodules from culled wild African elephants, we determined that EEHV2, EEHV3, EEHV6, and EEHV7 are natural endogenous viruses of African elephants, whereas EEHV1A, EEHV1B, EEHV4, and EEHV5 are apparently natural and nearly ubiquitous infections of Asian elephants that are occasionally shed in trunk washes and saliva of most healthy asymptomatic adult animals."

Hayward notes that only one example of a lethal cross-species infection with EEHV3 into an Asian elephant calf has been observed, and that the viruses causing disease normally do so only in their natural hosts.

Close monitoring of Asian elephant calves in zoos has so far enabled life-saving treatment for at least nine infected Asian calves, says Hayward, suggesting that such monitoring may ultimately enable determining why some animals become susceptible to severe disease after their primary EEHV1 infections, while most do not. "About 20% of all Asian elephant calves are susceptible to hemorrhagic disease, whereas symptomatic disease is extremely rare in African elephant calves under the same zoo conditions," says Hayward.

In another paper in the same issue of Journal of Virology, Hayward et al. demonstrate that the many highly diverged species and subtypes of EEHVs are ancient viruses that evolved separately from all other known subfamilies of mammalian herpesviruses within the ancestor of modern elephants, beginning about 100 million years ago.

Philip Pellett, of Wayne State University School of Medicine, Detroit, praises both of Hayward's studies in this issue of the Journal of Virology: "The information gained in the new EEHV papers will be important for developing diagnostic tools for these viruses, and for developing therapeutic approaches to diseases caused by EEHV."

Elephant populations have been plummeting. African elephants declined roughly from 10 million to half a million during the 20th century, due largely to habitat destruction, and intense poaching has since further decimated their numbers. Asian elephants, once in the millions, now number less than 50,000. They are threatened mostly by habitat fragmentation. Poaching is not an issue since they lack tusks.

###

The full papers will appear in the December issue of the Journal of Virology.

Journal of Virology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>