Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New zeolite material may solve diesel shortage

01.02.2012
World fuel consumption is shifting more and more to diesel at the expense of gasoline.
A recently published article in Nature Chemistry by a research team at Stockholm University and the Polytechnic University of Valencia in Spain presents a new porous material that evinces unique properties for converting gasoline directly into diesel. The material has a tremendously complex atomic structure that could only be determined with the aid of transmission electron microscopy.

The aluminosilicate, which has been named ITQ-39, belongs to the zeolite class and has a porous structure that enables sufficiently small molecules to pass through it. On their way through, they can react with other molecules and create a desired product. The new material has channels of varying size and shape in different directions. These variously shaped channels entail that a molecule that is transported inside the material can be limited in different ways, depending on the direction it travels.

ITQ-39 is the most complex zeolite material ever discovered. Its structure was determined by a research team at Stockholm University headed by Professor Xiaodong Zou, with the help of electron crystallography. On an electron microscope, extremely small crystals can be studied, in this case down to a couple of nanometers. What makes ITQ-39 such a complicated material is that, unlike most other crystalline material, it is not perfectly ordered. The material studied has a type of chaotic order. To be able to understand the material in the smallest detail requires both a model of how the atoms are arranged in the minimal ordered areas and a model of how these domains are then linked together into crystals. This disorder can be studied with the aid of high-resolution images taken with an electron microscope that can then serve as a basis for creating a model of the atomic structure of the material. This is what researchers Tom Willhammar, Junliang Sun, Wan Wei, Peter Oleynikov, Daliang Zhang, and Xiaodong Zou at Stockholm University present in the latest issue of the scientific journal Nature Chemistry.

The material, which was produced by a research team headed by Professor Avelino Corma in the Polytechnic University of Valencia, has proven to be an excellent catalytic converter for turning gasoline into diesel. This is a process that has become ever more important with the marked growth in the demand for diesel in recent years.

The project is funded by the Swedish Research Council, VINNOVA, the Göran Gustafsson Foundation, and the Knut and Alice Wallenberg Foundation.

Title of the article: “Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography” Nature Chemistry 2012 (DOI: 10.1038/NCHEM.1253)

Facts about zeolites:
Zeolite means ‘boiling stone’ in Greek. Zeolite is a collective name for a group of natural and synthetic minerals with an open crystal structure. They mainly consist of aluminum silicate and comprise some 60 naturally occurring minerals and about a hundred synthetic counterparts.

Zeolites contain masses of nanometer-sized pores and channels and can be used as catalytic converters, ion-exchangers, and adsorbents. Because zeolites have so many pores and intersecting channels, they have a huge internal surface area; one gram of a zeolite can have a surface about the size of half a football field.

For more information, please contact: Xiaodong Zou, Department of Materials and Environmental Chemistry, Stockholm University, tel: +46 (0)8-162389 or mobile: +46 (0)762168820, xzou@mmk.su.se

Linnea Bergnéhr | idw
Further information:
http://www.su.se

More articles from Life Sciences:

nachricht When predictions of theoretical chemists become reality
22.05.2020 | Technische Universität Dresden

nachricht From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there
20.05.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New technology can detect anti-virus antibody in 20 minutes

25.05.2020 | Medical Engineering

ATLAS telescope discovers first-of-its-kind asteroid

25.05.2020 | Physics and Astronomy

Researchers develop high-performance cancer vaccine using novel microcapsules

25.05.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>