Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New zeolite material may solve diesel shortage

01.02.2012
World fuel consumption is shifting more and more to diesel at the expense of gasoline.
A recently published article in Nature Chemistry by a research team at Stockholm University and the Polytechnic University of Valencia in Spain presents a new porous material that evinces unique properties for converting gasoline directly into diesel. The material has a tremendously complex atomic structure that could only be determined with the aid of transmission electron microscopy.

The aluminosilicate, which has been named ITQ-39, belongs to the zeolite class and has a porous structure that enables sufficiently small molecules to pass through it. On their way through, they can react with other molecules and create a desired product. The new material has channels of varying size and shape in different directions. These variously shaped channels entail that a molecule that is transported inside the material can be limited in different ways, depending on the direction it travels.

ITQ-39 is the most complex zeolite material ever discovered. Its structure was determined by a research team at Stockholm University headed by Professor Xiaodong Zou, with the help of electron crystallography. On an electron microscope, extremely small crystals can be studied, in this case down to a couple of nanometers. What makes ITQ-39 such a complicated material is that, unlike most other crystalline material, it is not perfectly ordered. The material studied has a type of chaotic order. To be able to understand the material in the smallest detail requires both a model of how the atoms are arranged in the minimal ordered areas and a model of how these domains are then linked together into crystals. This disorder can be studied with the aid of high-resolution images taken with an electron microscope that can then serve as a basis for creating a model of the atomic structure of the material. This is what researchers Tom Willhammar, Junliang Sun, Wan Wei, Peter Oleynikov, Daliang Zhang, and Xiaodong Zou at Stockholm University present in the latest issue of the scientific journal Nature Chemistry.

The material, which was produced by a research team headed by Professor Avelino Corma in the Polytechnic University of Valencia, has proven to be an excellent catalytic converter for turning gasoline into diesel. This is a process that has become ever more important with the marked growth in the demand for diesel in recent years.

The project is funded by the Swedish Research Council, VINNOVA, the Göran Gustafsson Foundation, and the Knut and Alice Wallenberg Foundation.

Title of the article: “Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography” Nature Chemistry 2012 (DOI: 10.1038/NCHEM.1253)

Facts about zeolites:
Zeolite means ‘boiling stone’ in Greek. Zeolite is a collective name for a group of natural and synthetic minerals with an open crystal structure. They mainly consist of aluminum silicate and comprise some 60 naturally occurring minerals and about a hundred synthetic counterparts.

Zeolites contain masses of nanometer-sized pores and channels and can be used as catalytic converters, ion-exchangers, and adsorbents. Because zeolites have so many pores and intersecting channels, they have a huge internal surface area; one gram of a zeolite can have a surface about the size of half a football field.

For more information, please contact: Xiaodong Zou, Department of Materials and Environmental Chemistry, Stockholm University, tel: +46 (0)8-162389 or mobile: +46 (0)762168820, xzou@mmk.su.se

Linnea Bergnéhr | idw
Further information:
http://www.su.se

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>