Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017

Fuel from waste? It is possible. But hitherto, converting organic waste to fuel has not been economically viable. Excessively high temperatures and too much energy are required. Using a novel catalyst concept, researchers at the Technical University of Munich (TUM) have now managed to significantly reduce the temperature and energy requirements of a key step in the chemical process. The trick: The reaction takes place in very confined spaces inside zeolite crystals.

Ever more electricity is produced decentrally using wind, hydro and solar power plants. “It thus makes sense to decentralize chemical production, as well,” thinks Prof. Johannes Lercher, who heads the Chair of Technical Chemistry II at TU Munich. “Theoretically, any municipality could produce its own fuel or fertilizer.”


Members of Prof. Lercher’s team at the Catalysis Research Center: Dr. Yue Liu, Teresa Schachtl and Daniel Melzer; fltr

Image: Andreas Heddergott / TUM


Model of the zeolithe catalyst

Image: Andreas Heddergott / TUM

To date, this has not been possible because chemical processes require a great deal of energy – more than local renewable energy sources can provide. “We thus aimed at findinding new processes to lay the foundations for the distributed production of chemicals, which can be powered using renewable energy sources,” explains the chemist, who is also Director of the American Institute for Integrated Catalysis at Pacific Northwest National Laboratory.

His team has now fulfilled one prerequisite for a turnaround in chemical production: In the laboratory, the scientists demonstrated that the temperature required for splitting carbon-oxygen bonds in acidic aqueous solution can be drastically reduced using zeolite crystals. The process also ran much faster than without the zeolite catalysts.

Nature as a model

Nature provided the reference for the development of the new process. In biological systems, enzymes with small pockets in their surface accelerate chemical processes.

“We thought about how we could apply theses biological functions to organic chemistry,” explains Lercher. “While searching for suitable catalysts that accelerate the reaction, we stumbled upon zeolites – crystals with small cavities in which the reactions take place under cramped conditions comparable to those in enzyme pockets.”

Cornered hydronium ions

But, do cramped quarters really increase the reactivity? To answer this question, Lercher’s team compared the reactions of carbon compounds with acids in a beaker to the same reactions in zeolites. The result: In the crystal cavities, where the reacting molecules, for example alcohols, meet upon the hydronium ions of the acids, reactions run up to 100 times faster and at temperatures just over 100 °C.

“Our experiments demonstrate that zeolites as catalysts are similarly effective as enzymes: Both significantly reduce the energy levels required by the reactions,” reports Lercher. “The smaller the cavity, the larger the catalytic effect. We achieved the best results with diameters far below one nanometer.”

Geckos, wax and zeolites

But why do tight spaces foster the reactivity of molecules? “The force that improves the reaction path is the same as the one that causes wax to stick to a tabletop and that allows geckos to walk on ceilings,” replies Lercher. “The more contact points there are between two surfaces, the larger the adhesion. In our experiments, the organic molecules, which are in an aqueous solution, are literally attracted to the pores in the zeolites.”

Thus, the hydronium ions within the cavities have a significantly greater likelihood of bumping into a reaction partner than those outside. The result is an acid catalyzed chemical reaction that takes place faster and with lower energy input.

From garbage to fuel

When they come into contact with hydronium ions, organic molecules such as alcohols lose oxygen. This makes the process suitable to converting bio-oil obtained from organic waste into fuel.

It will take some time, of course, before the new process can be deployed in the field. “We are still working on the fundamentals,” emphasizes Lercher. “We hope to use these to create the conditions required for new, decentral chemical production processes that no longer require large-scale facilities.”

The work was developed in a cooperation of the Chair for Technical Chemistry II and the Catalysis Research Institute at the Technical University of Munich with the Pacific Northwest National Laboratory (PNNL). They were funded by the U.S. Department of Energy (DOE). Some of the NMR experiments were performed at the PNNL's Environmental Molecular Science Laboratory (EMSL). PNNL’s National Energy Research Scientific Computing Center (NERSC) provided simulation time.

Publications:

Enhancing the catalytic activity of hydronium ions through constrained environments
Y. Liu, A. Vjunov, H. Shi, S. Eckstein, D. M. Camaioni, D. Mei, E. Barath, J. A. Lercher
Nat. Comm., 8, 14113 (2017) – DOI: 10.1038/ncomms14113
https://www.nature.com/articles/ncomms14113

Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions
H. Shi, S. Eckstein, A. Vjunov, D.M. Camaioni, J.A. Lercher
Nat. Comm., 8, 14113 (2017) – DOI: 10.1038/ncomms15442
https://www.nature.com/articles/ncomms15442

Contact:

Prof. Dr. Johannes Lercher
Technical University of Munich
Chair for Technical Chemistry II
Lichtenbergstr. 4, 85746 Garching, Germany
Tel.: +49 89 289 13540 – e-mail: Johannes.Lercher@ch.tum.de
Web: http://www.tc2.ch.tum.de

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>