Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra finches change their call communication pattern according to their reproductive status

06.10.2015

The vocal repertoire of songbirds not only consists of complex song which is mainly uttered in the breeding season but is complemented by a large number of simpler calls. Their function however is still poorly understood. Scientists from the Max Planck Institute for Ornithology in Seewiesen in Germany now recorded the calls of individual zebra finches behaving freely inside groups, and found that the birds change their call repertoire and calling behaviour in the group over the course of the breeding cycle. Using tiny microphone transmitters they discovered perfectly timed patterns of call communication that were associated with successful egg-laying.

Songbird song is a conspicuous behaviour that not only fascinates bird lovers but has turned into a major scientific research objective. Due to their complexity, songs can easily be quantified and song changes can be related to various biological processes.


zebra finches in the wild. Image: Lisa Gill

Calls are less conspicuous and might be less complex in structure, therefore the investigation of calls has been rather neglected by researchers – even though they are frequently used by songbirds for direct communication.

This is also the case in the zebra finch, a songbird native to Australia that lives in colonies and produces several thousand calls per day. So far it was not possible to investigate in detail the role of these calls due to the difficulty to record and assign individual calls in the presence of conspecifics, let alone in a large group.

Using state-of-the art recording techniques, scientists from the Max Planck Institute for Ornithology now succeeded at this task. They equipped the birds with small radio transmitter backpacks and were able to record the entire call repertoire of the individuals within a group.

In total 32 finches wearing this backpack were first kept in single-sex aviaries to get used to this high-tech equipment. Recordings began when the researchers transferred four males and four females into a large aviary.

Shortly thereafter the birds started to form pairs and as soon as nesting material was available, they immediately commenced with nest building which was followed, albeit not in all pairs, by egg laying. The researchers found that during the breeding cycle, but especially when pairs began building nests, the birds changed the usage of certain calls and started using different call types, in particular more so-called “cackle” calls.

Calls were characterised by exactly timed back-and-forth interactions, and, over time, were directed more and more towards their partner than other members of the group.

Pairs that performed more of these call exchanges during nesting were more likely to lay eggs. Thus, both the timing and the type of calls used in pair communication are important for a successful breeding attempt, says Lisa Gill, first author of the study. Zebra finches form life-long pairs and live in predominantly arid habitats in Australia.

They are able to breed year-round as long as their unpredictable environment permits, for example when sudden rainfall occurs. For this, pairs must be able to quickly change their reproductive status for successful breeding. “A flexible call repertoire in response to a changing environment could be important for the birds’ biological fitness”, concludes Gill. (SL)

Original work:
Patterns of call communication between group-housed zebra finches change during the breeding cycle
Lisa F. Gill, Wolfgang Goymann, Andries Ter Maat, Manfred Gahr
Published on elife (Open Access) on October 6, 2015: http://elifesciences.org/content/4/e07770

Contact:
Lisa Gill
Department of Behavioural Neurobiology
Max Planck Institute for Ornithology
D-82319 Seewiesen/Germany
Email: lgill@orn.mpg.de
Tel.: 08157 932 388

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Structual color barcode micromotors for multiplex biosensing
21.01.2020 | Science China Press

nachricht Cyanobacteria in water and on land identified as source of methane
21.01.2020 | Forschungsverbund Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>