Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yersinia pestis bacteria clearly identified as the cause of the big plague epidemic of the Middle Ages

08.10.2010
The 'Black Death' was caused by at least two previously unknown types of Yersinia pestis

The latest tests conducted by anthropologists at the Johannes Gutenberg University Mainz (JGU) have proven that the bacteria Yersinia pestis was indeed the causative agent behind the "Black Death" that raged across Europe in the Middle Ages.

The cause of the epidemic has always remained highly controversial and other pathogens were often named as possible causes, in particular for the northern European regions. Using DNA and protein analyses from skeletons of plague victims, an international team led by the scientists from Mainz has now conclusively shown that Yersinia pestis was responsible for the Black Death in the 14th century and the subsequent epidemics that continued to erupt throughout the European continent for the next 400 years.

The tests conducted on genetic material from mass graves in five countries also identified at least two previously unknown types of Yersinia pestis that occurred as pathogens. "Our findings indicate that the plague traveled to Europe over at least two channels, which then went their own individual ways," explains Dr Barbara Bramanti from the Institute of Anthropology of Mainz University. The works, published in the open access journal PLoS Pathogens, now provide the necessary basis for conducting a detailed historical reconstruction of how this illness spread.

For a number of years, Barbara Bramanti has been researching major epidemics that were rampant throughout Europe and their possible selective consequences as part of a project funded by the German Research Foundation (DFG). For the recently published work, 76 human skeletons were examined from suspected mass graves for plague victims in England, France, Germany, Italy, and the Netherlands. While other infections such as leprosy can be easily identified long after death by the deformed bones, the problem faced in the search for plague victims lies in the fact that the illness can lead to death within just a few days and leaves no visible traces. With luck, DNA of the pathogen may still be present for many years in the dental pulp or traces of proteins in the bones. Even then it is difficult to detect, and may be distorted through possible contamination. The team led by Bramanti found their results by analyzing old genetic material, also known as ancient DNA (aDNA): Ten specimens from France, England, and the Netherlands showed a Yersinia pestis-specific gene. Because the samples from Parma, Italy and Augsburg, Germany gave no results, they were subjected to another method known as immunochromatography (similar to the method used in home pregnancy tests for example), this time with success.

Once the infection with Yersinia pestis had been conclusively proven, Stephanie Hänsch and Barbara Bramanti used an analysis of around 20 markers to test if one of the known bacteria types "orientalis" or "medievalis" was present. But neither of these two types was found. Instead, two unknown forms were identified, which are older and differ from the modern pathogens found in Africa, America, the Middle East, and the former Soviet Union regions. One of these two types, which are thought to have contributed significantly to the catastrophic course of the plague in the 14th century, most probably no longer exists today. The other appears to have similarities with types that were recently isolated in Asia.

In their reconstruction, Hänsch and Bramanti show an infection path that runs from the initial transportation of the pathogen from Asia to Marseille in November 1347, through western France to northern France and over to England. Because a different type of Yersinia pestis was found in Bergen op Zoom in the Netherlands, the two scientists believe that the South of the Netherlands was not directly infected from England or France, but rather from the North. This would indicate another infection route, which ran from Norway via Friesland and down to the Netherlands. Further investigations are required to uncover the complete route of the epidemic. "The history of this pandemic," stated Hänsch, "is much more complicated than we had previously thought."

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13883.php
http://dx.plos.org/10.1371/journal.ppat.1001134

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>