Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast are first cells known to cure themselves of prions

10.12.2014

Yeast cells can sometimes reverse the protein misfolding and clumping associated with diseases such as Alzheimer's, according to new research from the University of Arizona.

The new finding contradicts the idea that once prion proteins have changed into the shape that aggregates, the change is irreversible.


When colonies of baker's yeast cells that contain clumped prion proteins (colonies of white cells on left) are stressed by high temperatures, some can convert the aggregated prion proteins to the non-clumping form of the protein (red cells in the colonies the right).

Credit: Serio laboratory/ University of Arizona molecular and cellular biology

"It's believed that when these aggregates arise that cells cannot get rid of them," said Tricia Serio, UA professor and head of the department of molecular and cellular biology. "We've shown that's not the case. Cells can clear themselves of these aggregates."

Prions are proteins that change into a shape that triggers their neighbors to change, also. In that new form, the proteins cluster. The aggregates, called amyloids, are associated with diseases including Alzheimer's, Huntington's and Parkinson's.

"The prion protein is kind of like Dr. Jekyll and Mr. Hyde," said Serio, senior author of the paper published today in the open-access journal eLife. "When you get Hyde, all the prion protein that gets made after that is folded in that bad way."

For yeast, having clumps of amyloid is not fatal. Serio and her students exposed amyloid-containing cells of baker's yeast to 104 F (40 C), a temperature that would be a high fever in a human. When exposed to that environment, the cells activated a stress response that changed the clumping proteins back to the no-clumping shape.

The finding suggests artificially inducing stress responses may one day help develop treatments for diseases associated with misfolded prion proteins, Serio said.

"People are trying to develop therapeutics that will artificially induce stress responses," she said. "Our work serves as a proof of principal that it's a fruitful path to follow."

First author on the paper "Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing" is Serio's former graduate student Courtney Klaips, now at the Max Planck Institute for Biochemistry in Munich. The other authors are Serio's students Megan Hochstrasser, now at the University of California, Berkeley, and Christine Langlois of Brown University. The paper is available here: http://dx.doi.org/10.7554/eLife.04288

National Institute of Health grants R01 GM069802001, F31 AG034754 and F31 GM099383 funded the research.

To accomplish their jobs inside cells, proteins must fold into specific shapes. Cells have quality-control mechanisms that usually keep proteins from misfolding. However, under some environmental stresses, those mechanisms break down and proteins do misfold, sometimes forming amyloids.

Cells respond to environmental stress by making specific proteins, known as heat-shock proteins, which are known to help prevent protein misfolding.

Serio and her students wanted to know whether particular heat-shock proteins could make amyloids revert to the normal shape. To that end, the team studied yeast cells that seemed unable to clear themselves of the amyloid form of the prion protein Sup35.

The researchers were testing one heat-shock protein at a time in an attempt to figure out which particular proteins were needed to clear the amyloids. However, the results weren't making sense, she said.

So she and Klaips decided to stress yeast cells by exposing them to a range of elevated temperatures - as much as 104 F (40 C) - and let the cells do what comes naturally.

As a result, the cells made a battery of heat-shock proteins. The researchers found at one specific stage of the cell's reproductive cycle, the yeast could turn aggregates of Sup35 back into the non-clumping form of the protein.

Yeast cells reproduce by budding. The mother cell partitions off a bit of itself into a much smaller daughter cell, which separates and then grows up.

The researchers found in the heat-stressed yeast, just when the daughter was being formed, the mother cell retained most of the heat-shock proteins called chaperones, especially Hsp-104. As a result, the mother had a particularly high concentration of Hsp-104 because little of the protein was shared with the daughter.

The mother cells ended up "curing" themselves of the Sup35 amyloid, although the daughters did not. The degree of curing was correlated with the concentration of Hsp-104 in the cell, and the higher the temperature the more Hsp-104 the cells had.

The Hsp-104 takes the protein in the amyloid and refolds it, Serio said. But she and her colleagues found that just inducing high levels of Hsp-104 in cells by itself does not change the amyloid protein back to the non-clumping form.

"Clearly the heat-shock proteins are collaborating in some way that we don't understand," she said.

Having the amyloid-forming version of the protein is not automatically bad, she said. It may be that shape is good under some environmental conditions, whereas the non-aggregating form is good under others.

Even in humans, amyloid forms of a protein can be helpful, she said. Amyloid proteins are associated with skin pigmentation and with hormone storage.

To clear the amyloid from yeast cells, these experiments triggered cells to make many different heat-shock proteins.

Serio now wants to figure out the minimal system necessary to clear amyloids from a cell. Knowing that may help the development of drug therapies for amyloid-related human diseases, she said.

Researcher Contact

Tricia Serio
tserio@email.arizona.edu
520-621-7563

Tricia Serio's website: http://mcb.arizona.edu/people/tserio

Mari N. Jensen | EurekAlert!
Further information:
http://uanews.org/

Further reports about: Arizona Cells clear daughter diseases heat-shock prion proteins prions proteins responses

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>