Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrong-time eating reduces fertility in fruit flies

08.06.2011
Penn study points to fertility-metabolism connection

Dieticians will tell you it isn't healthy to eat late at night: it's a recipe for weight gain. In fruit flies, at least, there's another consequence: reduced fertility.

That's the conclusion of a new study this week in Cell Metabolism by researchers at the Perelman School of Medicine at the University of Pennsylvania, in which they manipulated circadian rhythms in fruit flies and measured the affect on egg-laying capacity.

Lead author Amita Sehgal, PhD, John Herr Musser Professor of Neuroscience, stresses, though, that what is true in flies grown in a lab does not necessarily hold for humans, and any potential link between diet and reproduction would have to be independently tested.

"I wouldn't say eating at the wrong time of the day makes people less fertile, though that is the implication," says Sehgal, who is also a Howard Hughes Medical Institute Investigator. "I would say that eating at the wrong time of the day has deleterious consequences for physiology."

It's All Connected

Many aspects of animal biology cycle over the course of a day. Sleep and wakefulness, activity and rest, body temperature, and more, all fluctuate in a pattern called a circadian rhythm. Disruption of these rhythms has been shown to negatively affect physiology. Shift workers, for instance, often suffer from psychological and metabolic issues that colleagues on normal hours do not. Rodents with disrupted circadian rhythms are more likely to develop obesity.

For a while, Sehgal explains, researchers believed animals had a single master molecular clock, located in the brain, that controlled activity throughout the body. In recent years, however, they have come to understand that some individual organs also have their own, independent clocks, like townspeople who wear a wristwatch and keep it synchronized with the clock in city hall.

The mammalian liver is one organ that has its own independent clock. In 2008, Sehgal's team discovered that the fruit fly equivalent of the liver, called the fat body, has its own clock, which controls eating and food storage. They wanted to know what would happen if the fat body clock became desynchronized from the master clock in the brain.

Decoupling Clocks

First, her team asked which fly genes are controlled specifically by the fat body clock. Using gene chip microarrays, they identified 81 genes related to lipid and carbohydrate metabolism, the immune system, and reproduction that fit those criteria.

Next, the researchers attempted to decouple the fat body and central clocks by keeping the flies in constant darkness (to eliminate effects of light on these clocks) and feeding them at times when they don't normally eat. They found the two clocks could be desynchronized: disrupting the animals' feeding cycles altered the cycling of genes controlled by the fat-body clock, but not those regulated by the central clock itself itself.

Finally, the team addressed the functional consequences of this desynchronization, by counting the number of eggs the flies laid under different conditions. Flies fed at the "right" time of the day deposited about 8 eggs per day, compared to about 5 when they fed at the "wrong" time.

"Circadian desynchrony caused by feeding at the 'wrong' time of day leads to a defect in overall reproductive capacity," the authors wrote.

The next question to pursue, Sehgal says, is finding the molecular mechanism that controls this phenomenon: How does the fat body communicate with the ovaries. And, more importantly, is this effect restricted to fruit flies, or does it also occur in higher organisms, including humans.

The research was funded by the Howard Hughes Medical Institute and the National Institute of Neurological Disorders and Stroke and the National Heart, Lung, and Blood Institute.

Other authors include Penn postdoctoral fellows Kanyan Xu, Justin R. DiAngelo, and Michael E. Hughes, as well as John B. Hogenesch, associate professor of Pharmacology.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>