Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The worst luck in the world? The heart disease mutation carried by 60 million

19.01.2009
Heart disease is the number one killer in the world and India carries more than its share of this burden.

Moreover, the problem is set to rise: it is predicted that by 2010 India’s population will suffer approximately 60% of the world’s heart disease.

Today, an international team of 25 scientists from four countries provides a clue to why this is so: 1% of the world’s population carries a mutation almost guaranteed to lead to heart problems and most of these come from the Indian subcontinent, where the mutation reaches a frequency of 4%.

Heart disease has many causes, some carried in our genes and others linked to our lifestyle, but all seemingly complex, hard to pin down and incompletely understood. So the new study published in Nature Genetics is striking for the size and simplicity of the effect it reports.

The mutation, a deletion of 25 letters of genetic code from the heart protein gene MYBPC3, is virtually restricted to people from the Indian subcontinent. But there, Caste and Tribe, Hindu, Muslim, Sikh, Christian and others are all united by this affliction.

The mutation was discovered five years ago in two Indian families with cardiomyopathy, but its significance only became apparent after almost 1500 people from many parts of India, some with heart disease and some without, were studied.

Scientists express this genetic risk as an odds ratio, where 1.2 would be a small effect and 2.0 a large one. For the MYBPC3 mutation, the odds ratio is almost off-scale, a staggering 7.0. Carriers usually show few symptoms until middle age, but after that age most are symptomatic and suffer from a range of effects, at worst sudden cardiac death.

"The mutation leads to the formation of an abnormal protein," explained the study leader, Kumarasamy Thangaraj from the Centre for Cellular and Molecular Biology, Hyderabad, India. "Young people can degrade the abnormal protein and remain healthy, but as they get older it builds up and eventually results in the symptoms we see."

The combination of such a large risk with such a high frequency is, fortunately, unique. "How can such a harmful mutation be so common?" asks Chris Tyler-Smith from The Wellcome Trust Sanger Institute, Hinxton, UK. "We might expect such a deleterious change to have ‘died out’.

"We think that the mutation arose around 30,000 years ago in India, and has been able to spread because its effects usually develop only after people have had their children. A case of chance genetic drift: simply terribly bad luck for the carriers."

"The bad news is that many of these mutation carriers have no warning that they are in danger," said Perundurai S. Dhandapany from Madurai Kamaraj University, Madurai, India, "but the good news is that we now know the impact of this mutation."

The lifetime risk of developing heart failure is roughly one in five for a person aged 40 years. Now that this mutation has been identified, there is a new glimmer of hope for some of them. The mutation’s effects vary a lot from person to person. Carriers could be identified at a young age by genetic screening and adopt a healthier lifestyle.

"This is a genetic finding of great importance," said Sir Mark Walport, Director of the Wellcome Trust. "Heart disease is one of the world's leading killers, but now that researchers have identified this common mutation, carried by one in 25 people of Indian origin, we have hope of reducing the burden that the disease causes. This research should lead to better screening to identify those at risk and may ultimately allow the development of new treatments."

And perhaps eventually new drugs could be developed to enhance the degradation of the abnormal protein and postpone the onset of symptoms. There is a market of 60 million people waiting.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk
http://www.ccmb.res.in/
http://www.mkuniversity.org/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>