Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the worm turns

03.04.2013
Scientists show how a monoamine neurotransmitter acts to coordinate a compound movement through two different receptors in C. elegans

New research by scientists at the University of Massachusetts Medical School shows at the single cell level how an external stimulus sets off a molecular chain reaction in the transparent roundworm C. elegans, a process in which a single neurotransmitter coordinates and times two separate actions.

These findings shed new light on how neurons translate sensory input into actions and may one day pave the way to understanding how misfiring neurons contribute to motor symptoms in neurological diseases such as Parkinson's disease. Details of the study were published online by PLOS Biology.

"We've known the broad outline of how a behavior circuit works-a stimulus starts a neuronal cascade, which ultimately activates a muscle cell-for decades," said Mark Alkema, PhD, assistant professor of neurobiology. "The details about how this process works, however, such as which neurotransmitters act through which receptors in which neurons have remained a mystery for even the simplest of behaviors.

"This research provides an answer to the simple question of how the worm turns around and the broader question of how a behavioral sequence is produced on a sub-cellular level. In time, understanding voluntary movement in humans will require answering the same questions about the timing and location of neurons and neurotransmitters-only in the infinitely more complex variety of circuits in the human nervous system," said Dr. Alkema.

Roundworms move by alternately relaxing and contracting ventral and dorsal muscles along both sides of its body. As the animal moves forward, it uses its head to probe for possible threats. A gentle touch to the head of the worm initiates an escape response resulting in the animal ceasing head movements and quickly moving backwards. This initial reaction is closely followed by a deep ventral turn allowing it to move away in the opposite direction.

Earlier studies have shown that tyramine, a monoamine neurotransmitter akin to noradrenaline in humans, is involved in the C. elegans escape response. Specifically, C. elegans have a pair of tyraminergic motor neurons that are essential for coordinating the initial suppression of head movement and the backing response. These neurons release tyramine, which works through a fast-acting ion channel called LGC-55 to inhibit forward movement and relax the neck muscles. How the animal coordinates this movement with the subsequent deep turn that allows it to complete the change in direction and move away from the threat, however, was unknown. In this study, the authors provide evidence that links this initial phase of the escape response to the later stages in which the worm makes a sharp turn and navigates away from the danger.

When C. elegans are placed on a surface containing a high concentration of tyramine they become immobilized. Alkema and colleagues found that this paralysis could be overcome by mutating the C. elegans gene responsible for encoding the G-protein coupled receptor SER-2. Additionally, they found that the SER-2 receptor was active in a set of 13 neurons residing along the ventral nerve cord. The synapses of these neurons were connected to corresponding ventral muscles cells along one side of the worm's body.

Further experiments revealed that the same monoamine neurotransmitter-tyramine-responsible for the initial phase of the escape response was also responsible for activating the slow-acting G-protein coupled receptor SER-2. Activation of this receptor inhibited release of the neurotransmitter GABA and facilitated contraction of the ventral muscles, allowing the animal to complete its turn and resume movement in the opposite direction.

"This study shows how tyramine works through separate receptors to produce a complex behavior requiring the temporal coordination of independent motor programs," said Alkema. "Acting through the fast-acting ionotropic receptor LGC-55, the animal completes the initial movement by ceasing head movement and backing away. At the same time, the slow-acting SER-2 receptor is also being activated by tyramine to complete the turn and facilitate movement in the opposite direction.

"It is the different receptors that allow for the coordination of these actions by the same neurotransmitter," said Alkema. "This indicates that tyramine, much like adrenergic signaling in mammals, coordinates different aspects of the flight response. It's possible that temporally coordinated activation of ionotropic and metabotropic receptors may be a common signaling motif employed across organisms to orchestrate behavioral responses and is something we will be pursing further."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit http://www.umassmed.edu.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

nachricht Gene mutation in the chloride channel triggers rare high blood pressure syndrome
17.10.2019 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>