Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first -- Localized delivery of an anti-cancer drug by remote-controlled microcarriers

16.03.2011
The fantastic voyage continues -- world first for Professor Sylvain Martel's team at Polytechnique Montreal

Soon, drug delivery that precisely targets cancerous cells without exposing the healthy surrounding tissue to the medication's toxic effects will no longer be an oncologist's dream but a medical reality, thanks to the work of Professor Sylvain Martel, Director of the Nanorobotics Laboratory at Polytechnique Montréal.

Known for being the world's first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Microcarriers on a mission

The therapeutic magnetic microcarriers (TMMCs) were developed by Pierre Pouponneau, a PhD candidate under the joint direction of Professors Jean-Christophe Leroux and Martel. These tiny drug-delivery agents, made from biodegradable polymer and measuring 50 micrometers in diameter — just under the breadth of a hair — encapsulate a dose of a therapeutic agent (in this case, doxorubicin) as well as magnetic nanoparticles. Essentially tiny magnets, the nanoparticles are what allow the upgraded MRI system to guide the microcarriers through the blood vessels to the targeted organ.

During the experiments, the TMMCs injected into the bloodstream were guided through the hepatic artery to the targeted part of the liver where the drug was progressively released. The results of these in-vivo experiments have recently been published in the prestigious journal Biomaterials and the patent describing this technology has just been issued in the United States.

The Nanorobotics Laboratory, which aims to develop new platforms for medical intervention, works closely with interventional radiologist Dr. Gilles Soulez and his team of the Imaging Research Platform at the Centre hospitalier de l'Université de Montréal Research Centre to develop medical protocols adapted for future use on humans.

Dr. Martel and his team receive financial support from the Canadian Institutes of Health Research (CIHR), the Canada Research Chair (CRC), the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds québécois de la recherche sur la nature et les technologies (FQRNT) and the Fonds de la recherche en santé du Québec (FRSQ).

About Polytechnique Montréal

Founded in 1873, Polytechnique Montréal is one of Canada's leading engineering university institutions in terms of both teaching and research. It is also the largest engineering university in Québec for the size of its student body and the scope of its research activities. With over 37,000 graduates, Polytechnique Montréal has trained nearly 30% of the current members of the Ordre des ingénieurs du Québec. Polytechnique provides training in 14 engineering specialties, has 230 professors and over 6,700 students. It has an annual operating budget of more than $100 million, in addition to a $70-million research fund.

RÉFÉRENCE : Pouponneau, P., Leroux, J.-C., Soulez, G., Gaboury, L. and Martel, S. (2011). Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials. Volume 32, Issue 13, May 2011, Pages 3481-3486. (DOI: 10.1016/j.biomaterials.2010.12.059)

Photos of Dr. Martel and images of the in-vivo course taken by the microcarriers available on request.

Polytechnique Montréal's Nanorobotics Laboratory: www.nano.polymtl.ca/

March 16, 2007, Fantastic Voyage: from Science Fiction to Reality? http://www.polymtl.ca/carrefour/en/article.php?no=2502

Source: Annie Touchette
Communications and recruitment department
Polytechnique Montréal
514 340-4711, ext. 4415, or 514 231-8133
Media information: Andrée Peltier, apeltier@ca.inter.net
Relations publiques Andrée Peltier
514.846.0003 - 514.944.8689

Dr. Sylvain Martel | EurekAlert!
Further information:
http://www.polymtl.ca

More articles from Life Sciences:

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>