Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first: Chinese scientists create pig stem cells

05.06.2009
Discovery has far-reaching implications for animal and human health

Scientists have managed to induce cells from pigs to transform into pluripotent stem cells – cells that, like embryonic stem cells, are capable of developing into any type of cell in the body.

It is the first time in the world that this has been achieved using somatic cells (cells that are not sperm or egg cells) from any animal with hooves (known as ungulates).

The implications of this achievement are far-reaching; the research could open the way to creating models for human genetic diseases, genetically engineering animals for organ transplants for humans, and for developing pigs that are resistant to diseases such as swine flu.

The work is the first research paper to be published online today (Wednesday 3 June) in the newly launched Journal of Molecular Cell Biology [1].

Dr Lei Xiao, who led the research, said: "To date, many efforts have been made to establish ungulate pluripotent embryonic stem cells from early embryos without success. This is the first report in the world of the creation of domesticated ungulate pluripotent stem cells. Therefore, it is entirely new, very important and has a number of applications for both human and animal health."

Dr Xiao, who heads the stem cell lab at the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China), and colleagues succeeded in generating induced pluripotent stem cells by using transcription factors to reprogramme cells taken from a pig's ear and bone marrow. After the cocktail of reprogramming factors had been introduced into the cells via a virus, the cells changed and developed in the laboratory into colonies of embryonic-like stem cells. Further tests confirmed that they were, in fact, stem cells capable of differentiating into the cell types that make up the three layers in an embryo – endoderm, mesoderm and ectoderm – a quality that all embryonic stem cells have. The information gained from successfully inducing pluripotent stem cells (iPS cells) means that it will be much easier for researchers to go on to develop embryonic stem cells (ES cells) that originate from pig or other ungulate embryos.

Dr Xiao said: "Pig pluripotent stem cells would be useful in a number of ways, such as precisely engineering transgenic animals for organ transplantation therapies. The pig species is significantly similar to humans in its form and function, and the organ dimensions are largely similar to human organs. We could use embryonic stem cells or induced stem cells to modify the immune-related genes in the pig to make the pig organ compatible to the human immune system. Then we could use these pigs as organ donors to provide organs for patients that won't trigger an adverse reaction from the patient's own immune system.

"Pig pluripotent stem cell lines could also be used to create models for human genetic diseases. Many human diseases, such as diabetes, are caused by a disorder of gene expression. We could modify the pig gene in the stem cells and generate pigs carrying the same gene disorder so that they would have a similar syndrome to that seen in human patients. Then it would be possible to use the pig model to develop therapies to treat the disease.

"To combat swine flu, for instance, we could make a precise, gene-modified pig to improve the animal's resistance to the disease. We would do this by first, finding a gene that has anti-swine flu activity, or inhibits the proliferation of the swine flu virus; second, we can introduce this gene to the pig via pluripotent stem cells – a process known as gene 'knock-in'. Alternatively, because the swine flu virus needs to bind with a receptor on the cell membrane of the pig to enter the cells and proliferate, we could knock out this receptor in the pig via gene targeting in the pig induced pluripotent stem cell. If the receptor is missing, the virus will not infect the pig."

In addition to medical applications for pigs and humans, Dr Xiao said his discovery could be used to improve animal farming, not only by making the pigs healthier, but also by modifying the growth-related genes to change and improve the way the pigs grow.

However, Dr Xiao warned that it could take several years before some of the potential medical applications of his research could be used in the clinic.

The next stage of his research is to use the pig iPS cells to generate gene-modified pigs that could provide organs for patients, improve the pig species or be used for disease resistance. The modified animals would be either "knock in" pigs where the iPS or ES cells have been used to transfer an additional bit of genetic material (such as a piece of human DNA) into the pig's genome, or "knock out" pigs where the technology is used to prevent a particular gene functioning.

Commenting on the study, the journal's editor-in-chief, Professor Dangsheng Li, said: "This research is very exciting because it represents the first rigorous demonstration of the establishment of pluripotent stem cell in ungulate species, which will open up interesting opportunities for creating precise, gene-modified animals for research, therapeutic and agricultural purposes."

[1] Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology. doi:10.1093/jmcb/jmp003

Emma Mason | EurekAlert!
Further information:
http://www.oxfordjournals.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>