Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolbachia Bacteria Reduce Parasite Levels and Kill the Mosquito that Spreads Malaria

20.05.2011
Wolbachia are bacteria that infect many insects, including mosquitoes. However, Wolbachia do not naturally infect Anopheles mosquitoes, which are the type that spreads malaria to humans.

Researchers at the Johns Hopkins Bloomberg School of Public Health found that artificial infection with different Wolbachia strains can significantly reduce levels of the human malaria parasite, Plasmodium falciparum, in the mosquito, Anopheles gambiae.

The investigators also determined that one of the Wolbachia strains rapidly killed the mosquito after it fed on blood. According to the researchers, Wolbachia could potentially be used as part of a strategy to control malaria if stable infections can be established in Anopheles. Their study is published in the May 19 edition PLoS Pathogens.

“This is the first time anyone has shown that Wolbachia infections can reduce levels of the human malaria parasite (Plasmodium falciparum) in Anopheles mosquitoes,” said Jason Rasgon, PhD, senior author of the study and associate professor with the Johns Hopkins Malaria Research Institute and the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology.

For the study, Rasgon and his colleagues infected Anopheles gambiae mosquitoes with two different Wolbachia strains (wMelPop and wAlbB). After infection, Wolbachia disseminated widely in the mosquitoes and infected diverse tissues and organs. Wolbachia also seemed to actively manipulate the mosquito’s immune system to facilitate its own replication. Both Wolbachia strains were able to significantly inhibit malaria parasite levels in the mosquito gut. Although not virulent in sugar-fed mosquitoes, the wMelPop strain killed most mosquitoes within a day after the mosquito was blood-fed.

“These experiments show that Wolbachia could be used in multiple ways to control malaria, perhaps by blocking transmission or by killing infected mosquitoes,” said Rasgon.

Worldwide, malaria afflicts more than 225 million people. Each year, the disease kills nearly 800,000, many of whom are children living in Africa.

In addition to Rasgon, the authors of “Wolbachia infections are virulent and inhabit the human malaria parasite Plasmodium falciparum in Anopheles gambiae” include Grant Hughes and Ping Xue of the Johns Hopkins Malaria Research Institute, and Ryuichi Koga and Takema Fukatsu of the National Institute of Advanced Industrial Science and Technology in Tsukuba, Japan.

Funding was provided by the Johns Hopkins Malaria Research Institute and the National Institute of Allergy and Infectious Diseases.

For more news from the Johns Hopkins Bloomberg School of Public Health, visit www.jhsph.edu/publichealthnews or follow us on Facebook at www.facebook.com/JohnHopkinsSPH or on Twitter at www.twitter.com/JohnsHopkinsSPH.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>